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FRENCH SUMMARY: ÉTUDES

CALCULATOIRES DE L’INTRICATION ET

DE LA CONTEXTUALITÉ QUANTIQUES

DANS LA PERSPECTIVE DE LEUR

VÉRIFICATION FORMELLE

MOTIVATIONS

De nos jours, l’informatique quantique est très présente dans les communications

publiques. Depuis les initiatives nationales (France, UK, USA, et plus... [Fel21, Pre20,

Smi18]), jusqu’à l’intérêt des chercheurs individuels. Cet intérêt provient des énormes

promesses de l’informatique quantique [GKS+21], mais également des défis techniques

qui donnent lieu à un riche champ de travail. Mais comme pour l’informatique classique

auparavant, l’informatique quantique est confrontée à une problématique très humaine :

comment faire confiance au programme ?

Cette question est prédominante dans certains domaines vitaux, où toute erreur du pro-

gramme peut coûter des vies humaines, comme l’aérospatial, les réacteurs nucléaires ou

le réseau ferroviaire parisien [CM14, MLL19, INT99, LSP+07]. Mais elle tend à s’étendre

à tous les domaines : en tant qu’utilisateur, nous voudrions nous assurer que le site

de notre banque est digne de confiance, ce qui implique par exemple le besoin d’un

JavaScript vérifié [BRN+20]. Puisque les programmes quantiques semblent avoir des

champs d’application très larges, nous voudrions nous assurer dès le départ qu’ils ré-

solvent le problème pour lequel ils ont été conçus. Cela est d’autant plus vrai que, pour

beaucoup, l’informatique quantique a un aspect très peu intuitif, ce qui implique en soi

un besoin plus important de correction, la propriété selon laquelle le programme effectue

bien la tâche pour laquelle il a été conçu.
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PROBLÉMATIQUE

Dans ce contexte, l’objet de cette thèse est de préparer le transfert de certaines méth-

odes de l’informatique classique à l’informatique quantique. Nous décomposerons le titre

de cette thèse (Études calculatoires de la contextualité et de la non-localité quantiques

dans la perspective de leur vérification formelle) en ses composantes afin de pouvoir les

décrire une par une. En commençant par le dernier élément : la vérification formelle

d’un programme quantique est pour l’instant un idéal lointain. En effet, en raison de la

jeunesse des processeurs quantiques fonctionnels, nous – en tant qu’utilisateurs – man-

quons de pratique sur les langages quantiques. Cette pratique faciliterait grandement la

vérification formelle des programmes classiques. En outre, les processus impliqués dans

la conception de processeurs quantiques ne passent pas encore à l’échelle en nombre

de qubits, ce qui entraîne la création d’outils de vérification de programmes quantiques

sans ordinateurs capables d’exécuter lesdits programmes. C’est la raison pour laquelle

nous avons concentré nos efforts de vérification sur des propriétés – la contextualité et

la non-localité quantiques – plutôt que sur des programmes quantiques, ces propriétés

étant une marche pouvant nous mener à la vérification de programmes. De plus, ce do-

maine étant très actif, nous avions l’opportunité d’utiliser des outils existants – pour la

vérification classique et quantique – pour étudier ces propriétés. L’idée étant que nous

préparons le terrain pour la vérification formelle des programmes quantiques en étudiant

des propriétés qui pourront ensuite être utilisées pour spécifier des programmes quan-

tiques. C’est pour cette raison que le choix des propriétés est particulièrement important,

et que nous avons choisi l’intrication et la contextualité. En effet, ces propriétés, en plus

d’être mesurables, ont une part importante dans la recherche sur l’explication de la supré-

matie quantique, ce qui laisse donc penser qu’elles sont essentielles dans l’élaboration

de programmes quantiques.

Il convient de noter que, comme indiqué précédemment, les informaticiens quantiques

manquent de pratique en programmation pour les processeurs quantiques, mais cette

pratique n’est pas complètement inexistante non plus. En effet, ces dernières années,

certains processeurs quantiques ont fait la une de l’actualité [Qua, Por21, Mat21] et,

malgré les limitations de ces processeurs, IBM a donné le contrôle de certains de ses

processeurs quantiques au public, par le biais de IBM quantum experience [IBM]. C’est

un outil précieux pour tester des problèmes suffisamment petits, et il a été utilisé pour

cette thèse, malgré ses importantes limitations.
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PLAN

La partie présente de ce manuscrit est un résumé de l’ensemble du manuscrit. Chaque

section numérotée de ce résumé représente une partie distincte du manuscrit.

Les notions nécessaires à la compréhension globale de la thèse sont exposées dans

la section 1. Cette section est suivie de mes contributions dans les sections 2 et 3.

Certaines notions ne sont introduites que lorsque cela est nécessaire, lorsqu’elles ne

sont pas pertinentes pour l’ensemble du manuscrit, afin d’éviter de donner au lecteur

trop d’informations à la fois.

La section 1 introduit les méthodes formelles classiques puis des éléments d’informatique

quantique, telle qu’abordées par un informaticien. Ce dernier point commence par des

bases de l’informatique quantique, suivi par les langages utilisés en informatique quan-

tique, quelques notions de vérification de programmes quantiques, et enfin les deux pro-

priétés au cœur de ce manuscrit : l’intrication et la contextualité.

La section 2 présente un simulateur d’exécution de circuits quantiques que j’ai développé

pour étudier l’intrication dans l’algorithme de Grover (un algorithme de recherche) et

la transformée de Fourier quantique (QFT, une version quantique de la transformée de

Fourier discrète). Dans cette section, le lecteur trouvera également la transposition de

cette étude à Qiskit, la bibliothèque d’IBM pour la simulation de circuits quantiques four-

nissant aussi un moyen d’envoyer les circuits localement créés et de les exécuter sur

leurs processeurs quantiques, une forme de cloud computing quantique.

La section 3 rassemble des travaux sur les géométries finies intéressantes pour leur lien

avec la contextualité quantique. Le premier travail consistait à générer des géométries

finies - également appelées systèmes de blocs, et vérifier la correction des algorithmes de

génération sous-jacents. Le second travail concernait la génération de géométries finies

afin d’étudier l’espace symplectique W(2n − 1, 2), un espace géométrique modélisant les

relations de commutation du groupe de Pauli.

1/ CONTEXTE

Afin de définir la vérification de programmes quantiques, nous devons d’abord com-

mencer par définir certains termes que nous utiliserons, provenant de la vérification de

programmes classiques. De manière générale, la vérification de programme peut être

classée en deux catégories : la vérification statique et la vérification dynamique. La véri-

fication statique consiste à raisonner sur le code du programme sans l’exécuter, alors

que la vérification dynamique se place à l’opposé, en vérifiant les programmes en les

exécutant.
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Un exemple de vérification statique est la vérification déductive. Elle se base sur les

préconditions (conditions d’entrée du programme) et les postconditions (conditions de

sortie du programme), et consiste à montrer que les postconditions peuvent être déduites

des préconditions.

Deux exemples de vérification dynamique sont le test et l’évaluation d’assertions à

l’exécution. Le test consiste à exécuter le programme avec certaines entrées prédéter-

minées et valider que la sortie du programme correspond bien à une valeur attendue.

Cependant, les tests peuvent prendre de nombreuses formes en fonction de ce qui est

testé (test unitaire, test d’intégration, test de non régression...). L’évaluation d’assertion

à l’exécution (Runtime Assertion Checking en anglais, ou plus communément RAC) con-

siste à ajouter des assertions dans le code même du programme, qui seront exécutées

en même temps que le reste du programme et qui contiennent des formules logiques dont

la validité doit être vérifiée lors de l’exécution de l’assertion. Ces assertions permettent

de s’assurer que le code se comporte correctement, même en production. Cette pra-

tique peut être mise en parallèle avec les mécanismes d’exceptions inclus dans certains

langages.

Maintenant que les notions de base de vérification de programme sont posées, penchons

nous sur celles d’informatique quantique. L’informatique quantique consiste en l’utilisation

de propriétés de la physique quantique afin de construire un processeur pouvant faire

des opérations inaccessibles aux processeurs classiques. Pour comprendre comment

marche un tel processeur, examinons les briques élémentaires portant l’information dans

un ordinateur quantique.

Dans un ordinateur classique, l’information est divisée en bits, pouvant avoir une valeur

généralement notée 0 ou 1. Pour un ordinateur quantique, cette information est divisée le

plus couramment en bits quantique, aussi appelés qubits, et dont les états de base sont

|0⟩ et |1⟩. Mais la différence la plus importante et qu’un qubit peut être une superposition

de ces deux états de base, un tel état peut être noté |φ⟩ = α |0⟩ + β |1⟩ avec α, β ∈ C

et |α|2 + |β|2 = 1. Continuons le parallèle entre l’informatique quantique et l’informatique

classique : pour l’informatique classique, plusieurs bits regroupés forment un registre,

qui pourrait par exemple prendre la valeur r = 001101; à cause de la superposition, une

telle concaténation des valeurs n’est pas aussi simple en informatique quantique. Pour

résoudre ce problème, nous utilisons l’opérateur ⊗ appelé produit tensoriel ou produit de

Kronecker. Les états peuvent être notés sous forme vectorielle, et dans ce cas, on aura

|0⟩ =
(

1
0

)
et |1⟩ =

(
0
1

)
. En notation vectorielle, le produit tensoriel a l’effet suivant :

A ⊗ B =

 a1,1B ... a1,nB
...

...
am,1B ... am,nB


A étant une matrice à m lignes et n colonnes et ai, j étant les coefficients de A.
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Ces états sont modifiés par des portes, comme en informatique classique (porte

ET,OU, . . .), et ces portes sont modélisées par des matrices unitaires. Un ensemble de

portes connu est l’ensemble des portes de Pauli, composé des matrices X =
(

0 1
1 0

)
,Y =(

0 i
−i 0

)
et Z =

(
1 0
0 −1

)
.

Les états peuvent aussi être mesurés, mais cette fois, la mesure est très différente de

son équivalent classique. En effet, un état classique peut être observé à tout instant sans

perturber l’état global du système. La mesure d’un état quantique est modélisée par une

matrice auto-adjointe appelée observable. Un état s’écrivant |φ⟩ = α |a⟩+
∑

i βi |bi⟩ mesuré

par un observable ayant {|a⟩ , |b1⟩ , . . . , |bk⟩} comme base de vecteurs propres aura une

probabilité |α|2 d’être projeté sur |a⟩. Dans ce cas, la mesure retournera la valeur propre

de l’observable associée à son vecteur propre |a⟩. Cet effet de la mesure est valable

pour tous les vecteurs propres de l’observable, il en résulte donc que la mesure est dite

destructive en quantique: l’état global du système est affecté par la mesure d’un qubit.

Les portes et les mesures peuvent être représentées sous formes de circuits comme

montré dans la figure 1. Mais ces circuits possédant d’importantes limitations comme

l’absence de boucles sont eux-mêmes abstraits par des langages comme l’assembleur

quantique (QASM [SAC+06]) permettant de créer des sous-routines. D’autres langages

|x1⟩ H R2
S WAP

|x2⟩ • Rn−1

Figure 1: Exemple de circuit quantique

plus riches encore ont été créés afin de générer des circuits plus efficacement comme

Qiskit, une librairie python développée par IBM afin de générer des circuits, simuler leur

exécution, et même soumettre en ligne les circuits à leurs processeurs quantiques. Enfin,

certains chercheurs supposent que la circuiterie n’est tout bonnement pas le bon langage

pour les algorithmes quantiques, et des langages sur un concept différent sont proposés,

comme le ZX-calcul, un autre langage graphique abstrayant les transformations sous

forme de nœud de graphe, et fournissant un riche ensemble de règles de réécriture de

graphes.

En s’appuyant sur les principes de vérification précédemment présentés et les concepts

de l’informatique quantique, des projets de vérification quantique ont déjà été proposés.

Une adaptation de la logique de Hoare à l’informatique quantique a été théorisée [Yin18]

même si elle reste peu réalisable en pratique. Des projets concrets ont aussi été publiés

comme un outil d’optimisation de circuit vérifiée avec Coq1 [HRH+21] et un outil de preuve

1https://coq.inria.fr/

https://coq.inria.fr/
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de programmes quantiques avec Why32 [CBB+21].

Nous avons choisi pour cette thèse de nous concentrer sur deux propriétés quantiques

sur lesquelles la vérification quantique pourrait plus tard s’appuyer. La première de ces

propriétés est l’intrication. Un état mettant en évidence l’intrication est l’état de Bell

|ψ⟩ = 1√
2
(|00⟩ + |11⟩). Quand on mesure le premier qubit de cet état avec par exemple

l’observable Z =
(

1 0
0 −1

)
, le second qubit est projeté en même temps que le premier. Ce

résultat contre-intuitif est une des démonstrations les plus élémentaires de l’intrication,

que l’on définit formellement en disant que l’intrication est la négation de la séparabilité.

Un état est dit séparable s’il peut s’écrire comme le produit tensoriel d’états à un qubit.

L’intrication ainsi définie est un concept binaire, mais des raffinements du concept exis-

tent, où l’on parle de degré d’intrication. Par exemple, les polynômes de Mermin sont des

opérateurs permettant de mettre en évidence un tel degré d’intrication.

La seconde propriété sur laquelle nous nous sommes penchés est la contextualité.

Une expérience est dite contextuelle si ses résultats ne peuvent pas être expliqués

sans que chaque élément de l’expérience ait une “connaissance” du contexte actuel de

l’expérience. Telle que nous l’avons abordée, nous avons surtout étudié la contextualité

de géométries finies rattachées à des expériences physiques. Une telle géométrie est

un ensemble de points et de lignes contenant des points, et nous la paramétrisons en

attribuant à chaque point un observable. Dans ce cas, la géométrie est contextuelle si les

résultats des mesures ne peuvent pas être expliqués classiquement sans que les points

aient accès aux mesures précédemment effectuées.

2/ ÉTUDE DE L’ÉVOLUTION DE L’INTRICATION AU COURS DE

L’ALGORITHME DE GROVER ET DE LA QFT

Pour étudier l’intrication, nous avons commencé par construire un simulateur, nous per-

mettant ainsi de maîtriser son comportement bien plus finement que si nous avions util-

isé un simulateur déjà existant. Des exemples de finesses permises par notre simulateur

sont : du calcul exact, un affichage de l’exécution exportable en LATEX ou encore un format

d’entrée personnalisé. Je me suis entraîné sur ce simulateur en validant l’algorithme de

Deutsch puis l’algorithme de Deutsch-Jozsa. L’algorithme de Deutsch consiste à pren-

dre une fonction booléenne f : B → B en entrée, et à déterminer en un seul appel

de la fonction si elle est constante ou non. L’algorithme de Deutsch-Jozsa quant à lui

prend en entrée une fonction booléenne à n entrées f : Bn → B qui doit être équilibrée

(| f −1({0})| = | f −1({1})|) ou constante (| f −1({0})| = 0 ou | f −1({1})| = 0), et détermine si elle est

équilibrée ou constante en un seul appel de f .

2http://why3.lri.fr/

http://why3.lri.fr/
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J’ai ensuite utilisé ce simulateur pour valider l’utilisation des polynômes de Mermin

[dJH+21] en tant qu’opérateurs de mesure de la non-localité.

Definition 1: Polynômes de Mermin, [ACG+16]

Soit a =
(
a j

)
j≥1

et a′ =
(
a′j

)
j≥1

deux familles d’observables à un qubit avec pour

valeurs propres {−1,+1}. Le polynôme de Mermin Mn(a, a′) est défini récursive-

ment parM1(a, a′) = a1

∀n ≥ 2, Mn =
1
2 Mn−1(a, a′) ⊗ (an + a′n) + 1

2 Mn−1(a′, a) ⊗ (an − a′n)

Nous avons tout d’abord appliqué ces polynômes à l’algorithme de Grover. En effet,

l’algorithme de Grover présente des particularités propres à rendre l’étude de l’intrication

des états qu’il traverse particulièrement intéressante. L’algorithme de Grover consiste

à trouver un élément dans une liste de N éléments, et arrive à faire ceci en O(
√

N)

opérations au lieu de O(N) pour le cas classique. Nous démontrons que l’algorithme

part d’un état séparable, et arrive à un état séparable à la fin de son exécution, mais

qu’il s’approche au milieu de son exécution d’un état non séparable. La conjecture

était donc que l’intrication augmenterait jusqu’à un point proche du milieu de l’exécution,

point à partir duquel l’intrication diminuerait. Et c’est bien ce que nous avons observé

pour des exécutions entre 4 et 12 qubits. Nous avons ensuite comparé l’évolution de la

mesure de l’intrication par les polynômes de Mermin à des résultats obtenus en utilisant

l’hyperdéterminant [JH19] pour la QFT (Quantum Fourier Transform). La QFT est une

version quantique de la transformée de Fourier discrète. Pour un nombre encodé sur n

bits, elle opère cette transformée en O(n2) opérations contre O(n2n) pour le cas classique.

Cette comparaison a mis en évidence que certaines portes ne changent jamais le niveau

d’intrication, ce qui était un résultat attendu, car ces portes sont locales et inversibles. En

revanche, un résultat plus surprenant est que, dans certains cas, l’hyperdéterminant et

les polynômes de Mermin ne concordaient pas sur l’évolution de l’intrication.

Forts de cette connaissance, nous avons ensuite implémenté ces mêmes calculs sur

Qiskit, la bibliothèque de circuiterie d’IBM. Nous avons obtenu des résultats très similaires

sur les simulations. En revanche, il semble que le bruit sur leur processeur quantique est

encore trop important pour obtenir des résultats aussi fins que ce que nous souhaitions.

Le bilan de cette étude est que les polynômes de Mermin sont bien un moyen d’évaluer

l’intrication, et qui plus est, un moyen implémentable physiquement, contrairement à

d’autre mesures de l’intrication comme la mesure par l’hyperdéterminant.
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3/ ÉTUDES DE LA CONTEXTUALITÉ À L’AIDE DE GÉOMÉTRIES

QUANTIQUES

Motivés par des travaux antérieurs réalisés par deux de mes encadrants de thèse, j’ai

ensuite abordé l’étude la contextualité du point de vue des géométries finies.

Dans cette section je me focalise sur les géométries dites quantiques, dans le but

d’étudier la contextualité. Je commence par étudier une méthode de génération de

géométries établie par Key et Moori [KM02], en expliquant le lexique spécifique à ce

domaine. Cette méthode avait été implémentée en Magma dès l’article initial, mais le

code correspondant était très peu fonctionnel. De plus, un erratum mentionnait que la

méthode initialement présentée serait fausse, nous avons donc ré-implémenté le code

en question, pour réaliser que la différence observée correspondait en fait à une erreur

dans l’interprétation de certaines notions. Pour vérifier tout cela, nous avons appliqué

des méthodes de vérification automatisée et de génie logiciel qu’il serait probablement

bon de transmettre aux mathématiques expérimentales pour éviter les erreurs telles que

celle que nous avons observée.

Une fois cette première expérience sur Magma acquise, nous avons implémenté des

méthodes de génération de géométries fondées sur les espaces symplectiques. Ces

espaces permettent d’encoder les opérateurs de Pauli efficacement, ainsi que leur rela-

tions de commutation. Pour cela, nous nous plaçons dans un espace projectif dont le

corps des coefficients a deux éléments. Nous notons les points p = [0, 1, 1, 1, 0, 0, 1, 0],

par exemple. L’exemple précédent peut être vu comme la représentation d’un opérateur

de Pauli, en prenant l’équivalence suivante : 0, 0 → I; 0, 1 → X; 1, 0 → Z; 1, 1 → Y. Dans

ce cas, on obtient p → X ⊗ Y ⊗ I ⊗ Z. La relation de commutation entre deux opéra-

teurs est encodée dans la forme symplectique f (p, q) =
∑

i∈[0..(n−1)/2] p2iq2i+1 + p2i+1q2i : si

la forme symplectique de deux points est nulle, alors ils commutent. En utilisant cela,

nous pouvons construire des géométries complexes, comme l’ensemble des lignes de

l’espace symplectique, ou des sous géométries définies par des formes quadratiques.

Nous évaluons la contextualité des géométries construites en montrant qu’un système

linéaire correspondant n’a aucune solution. Les résultats de ces calculs semblent indi-

quer des résultats vrais pour tout nombre n de qubits, il serait donc intéressant d’essayer

de prouver ces conjectures.

Enfin, nous utilisons des fonctions de génération de géométries de l’espace symplec-

tique pour mettre en évidence la structure des espaces symplectiques. Pour cela, nous

développons une fonction calculant la signature d’une géométrie. Signature que nous

avons nous-mêmes définie comme étant le (n + 1)-uplet – où n est le nombre de qubits

de l’expérience – contenant le nombre de lignes négatives de la géométrie, et le nombre

d’opérateurs contenant i fois l’identité, pour tout i entre 0 et n−1. L’espace symplectique à
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n qubits contient des géométries qui sont toutes identiques si on ne prend pas en compte

leur paramétrisation, mais qui sont différenciées par cette signature. Par exemple, les

formes quadratiques générant des géométries se classent en deux types, elliptiques ou

hyperboliques. Pour un type donné, toutes les géométries sont isomorphes si on ignore

la valeur des points. En revanche, leurs signatures étant différentes, elles ne sont pas

isomorphes quand on garde la valeur des points. En partant de ce constat, nous avons

remarqué que certaines géométries de l’espace symplectique à n qubits peuvent générer

des géométries de l’espace symplectique à n + 1 qubits. Plusieurs algorithmes sont pro-

posés prenant en compte différentes géométries.

CONCLUSION

La vérification des programmes est un élément clé pour leur bon fonctionnement. À ce

jour, la vérification des programmes quantiques n’en est qu’à ses débuts. Dans cette

thèse, j’ai exploré des manières de spécifier et d’évaluer deux propriétés quantiques –

l’intrication et la contextualité – préparant leur formalisation dans un outil de vérification

de programmes quantiques.

Dans un premier temps, un simulateur de circuit quantique a été développé dans Sage-

Math, permettant d’évaluer les propriétés des états quantiques à n’importe quelle étape

d’exécution intermédiaire, selon la méthode de vérification connue sous le nom de “run-

time assertion checking”. Ce prototype offre également la possibilité de choisir entre

le calcul en virgule flottante et le calcul exact, pour des résultats plus rapides ou plus

précis. Avec ce simulateur j’ai expliqué deux exemples d’algorithmes – l’algorithme

de Deutsch et l’algorithme de Deutsch-Jozsa. L’algorithme de Deutsch a été validé à

l’aide de tests exhaustifs – une méthode où toutes les entrées possibles sont testées.

L’algorithme de Deutsch-Jozsa a été validé jusqu’à n = 5 qubits en utilisant le test ex-

haustif borné. Ces deux méthodes sont des moyens très élémentaires de valider un

logiciel, disponibles uniquement pour certains cas simplistes. Ce même simulateur a été

utilisé afin d’étudier la variation de l’intrication dans l’algorithme de Grover et la QFT, en

utilisant les polynômes de Mermin [dJH+20, dJH+21]. Dans ce travail, nous avons con-

clu que les polynômes de Mermin sont un outil approprié pour mesurer dynamiquement

l’intrication à chaque étape d’un algorithme quantique. De plus, l’intrication a un com-

portement intéressant dans l’algorithme de Grover : elle augmente jusqu’à un point mé-

dian, puis diminue jusqu’à la fin de l’algorithme. Cette propriété pourrait être utilisée pour

vérifier la validité d’une implémentation de l’algorithme de Grover par exemple. La QFT a

un comportement d’intrication moins régulier, mais ce comportement avec les polynômes

de Mermin a été comparé à l’hyperdéterminant de Cayley, montrant certaines similitudes,

mais aussi quelques différences. Ce travail a ensuite été transposé avec Grâce Amouzou
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sur Qiskit afin d’évaluer si ces résultats pouvaient être transposés aux processeurs NISQ

(Noisy Intermediate-Scale Quantum), ce qui a donné lieu à un article sur le sujet par G.

Amouzou, J. Boffelli, H. Jaffali, K. Atchonouglo et F. Holweck [ABJ+20]. À l’heure actuelle,

le bruit des processeurs quantiques d’IBM est encore trop important pour obtenir des ré-

sultats correspondant aux résultats simulés, mais l’exécution sur leur simulateur a donné

les mêmes résultats que les nôtres. L’étude de la QFT a validé que certaines portes

affecteraient l’intrication, et d’autres non, cette propriété des portes pourrait être utilisée

dans la spécification et la validation.

Avec Jessy Colonval, nous nous sommes engagés ensuite dans le domaine des

géométries finies en implémentant en Magma des algorithmes de génération de

géométries préexistants [Cd19]. Ce travail était un échauffement pour la génération

de géométries finies avec Magma, suivi par la génération de géométries finies dites

quantiques pour leur lien avec les géométries de Mermin-Peres. Ces géométries ont

été étudiées en détail : nous avons d’abord travaillé sur des familles de géométries,

en évaluant si leurs membres étaient des géométries contextuelles ou non [dHGM21a,

dHGM21b]. Nous avons découvert que, pour n ∈ [2..5] qubits, les lignes de W(2n − 1, 2)

– l’espace symplectique des n qubits, un espace codant les relations de commutation

dans le groupe de Pauli sur n qubits –, leurs restrictions aux hyperboliques et leurs re-

strictions aux ellipses sont toutes contextuelles, mais les générateurs de W(2n − 1, 2) et

les lignes de W(2n − 1, 2) restreintes à certaines sous-géométries appelées perpsets ne

sont jamais contextuelles. Ensuite, nous avons étudié la structure de W(2n − 1, 2) en

utilisant une signature nouvellement définie [SdHG21]. Cette étude est complétée par

des correspondances trouvées entre les espaces symplectiques de différentes tailles, et

a été réalisée spécifiquement pour des géométries utilisant des observables de 2 à 5

qubits. Ces études visent à mieux comprendre la contextualité afin de trouver des pro-

priétés remarquables qui pourraient être utilisées pour spécifier la contextualité dans les

programmes quantiques, mais elles ne sont que la première étape d’un long chemin.

PERSPECTIVES

Bon nombre des sujets abordés durant cette thèse mériteraient un suivi. L’évaluation

de l’intrication dans l’algorithme de Grover et la QFT à l’aide des polynômes de Mermin

pourrait mener à une preuve formelle de la croissance puis décroissance de l’intrication

pendant l’algorithme de Grover. La QFT semble plus difficile à étudier à cet égard à cause

de de son comportement irrégulier, mais l’algorithme de Grover est un bon candidat. Par

ailleurs, depuis cette étude, l’algorithme de Grover a été implémenté et son exactitude

quant à la recherche de l’élément recherché a été prouvée dans SQIRE. Ceci signifie

que nous pourrions nous appuyer sur ce travail, et nous concentrer sur l’implémentation
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des polynômes de Mermin. Ceci pourrait également être abordé avec un autre logiciel de

formalisation, tel que Why3 où l’automatisation pourrait aider à accélérer le processus.

Une autre direction prometteuse est l’étude des géométries quantiques contextuelles. En

effet, il semble que l’espace contenant les géométries ait une structure très riche, qui

pourrait être explorée davantage. Ces géométries représentent des expériences mettant

en évidence la contextualité quantique, mais la contextualité peut aussi être mise en

évidence de manière plus générale par des protocoles, comme ceux employés dans les

jeux quantiques. Cela signifie que des programmes pourraient être étudiés sous cet

aspect, nous permettant peut être un jour de les spécifier en utilisant la contextualité.

De plus, nos travaux relèvent plusieurs conjectures, validées seulement pour un petit

nombre de qubits. C’est un endroit où les logiciels de preuve formelle nous permettraient

de prouver ces propriétés pour tout nombre de qubits. Un exemple d’une telle conjecture

serait le fait que toutes les lignes de W(2n − 1, 2) forment des géométries contextuelles

pour tout nombre n de qubits.





INTRODUCTION

MOTIVATIONS

These days, quantum computing is very present in public communications. From the na-

tional initiatives (France, UK, USA, and more... [Fel21, Pre20, Smi18]), up to the interest

of individual researchers, this interest comes from the huge promises of quantum com-

puting [GKS+21], but also from the technical challenges which yields a rich field of work.

But as for classical computing before, the quantum computing faces a particularly human

problematic: how can we trust the program?

Nowadays, this question is predominant in some vital fields, where any error of the pro-

gram could cost human lives, such as the aero-spacial, the nuclear reactors or the sub-

ways [CM14, MLL19, INT99, LSP+07]. But it tends to spread to all domains: for example,

we would like to ensure that our bank’s website is trustworthy, implying the need for

verified JavaScript [BRN+20]. Since, if they are used in the future, quantum programs

would have very wide fields of application, we would like to ensure from the beginning

that they solve the problem they were conceived to solve. This is especially true since,

for most people, quantum computing is not intuitive whatsoever, which implies more mis-

takes while conceiving a program, which implies a greater need for correctness, i.e. the

property for a program to indeed perform the task it is intended to.

PROBLEMATIC

In this context, the object of this thesis is to prepare the transfer of some methods from

classical computing to quantum computing. We will decompose the title of this thesis –

Computational studies of quantum contextuality and non-locality properties towards their

formal verification – in its components so we can describe them one by one. Starting by

the last element: the formal verification of a program running on a quantum system is

for now a distant ideal. Indeed, due to the youth of operational quantum processors, we

– as users – lack the practice on quantum languages that would greatly facilitate formal

verification, as in the case of classical programs. Furthermore, the processes involved

when designing quantum processors are yet hard to scale up, resulting in the creation

of quantum program verification tools without computers able to run said quantum pro-

1
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grams. Since reasoning on a program requires properties, such as being positive or even

for an integer, we chose to study quantum specific properties in the eventuality that they

could be of use for quantum program verification. In addition, these properties may be

used to demonstrate that the implemented program could not be efficiently reproduced by

a classical computer. This is where the choice of the properties is important, and this is

why we chose contextuality and entanglement. Furthermore, this field being quite active,

we were partially able to use existing tools – for classical and quantum verification – to

study these properties. The idea being that we are preparing the field for quantum pro-

grams formal verification by studying properties that can later be used to specify quantum

programs, in a similar way to quantum program verification preparing the field for scalable

proved programs, once the technical limitations of building a quantum processor will be

overcome.

It should be noted that, as stated previously, quantum computer scientists lack practice on

writing code for quantum processors, but practice is not completely nonexistent either. In

the recent years, some working quantum processors have been making the news [Qua,

Por21, Mat21], but those processors are not yet capable of complex operations. Still,

IBM gave control over some of their quantum processors to the people, through the IBM

quantum experience [IBM]. This is a valuable tool to test small enough problems, and it

has been used for this thesis, despite its important limitations.

PLAN

The notions needed for the global understanding of the thesis are explained in Part I. This

is followed by my contributions in Parts II to III. Some notions are only introduced when

needed, when they are not relevant for the whole manuscript, to avoid throwing at the

reader too much information at once.

Part I is split in two, with Chap. 1 introducing classical formal methods and Chap. 2

covering quantum computing, as seen by a computer scientist. This chapter covers the

basics of quantum computing, the languages used in quantum computing, some notions

of quantum program verification, and the two properties at the heart on this manuscript:

entanglement, a manifestation of non-locality, and contextuality.

Part II covers a quantum circuit execution simulator I developed (Chap. 3) to study entan-

glement in Grover’s algorithm (a search algorithm) and the Quantum Fourier Transform

(QFT, a quantum spin on the Discrete Fourier Transform) (Chap. 4). In this part, the

reader will also find the transposition of this study to Qiskit, IBM’s library for quantum cir-

cuit simulation also providing the ability for the user to send the programs to be executed

on their quantum processors, a form of quantum cloud computing (Chap. 5).
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Finally, Part III is the junction of works on finite geometries interesting for their connec-

tion to quantum contextuality. The first work was the generation of finite geometries –

also known as block designs – and checking that the generation algorithms were correct

(Chap. 6). The second work (Chap. 7 and 8) was about the generation of finite geome-

tries in order to study the symplectic space W(2n − 1, 2), a finite vector space equipped

with a function encoding the Pauli operators and their commutation relations.

LIST OF PUBLICATIONS

My Ph.D. works were published or are in the process of being published. For each publi-

cation, a short description is given below as well as the chapter in this thesis where it is

tackled.

[Cd19], published (national workshop), Chap. 6: preliminary work to study algorithms

generating block designs, mathematical objects in relation with quantum contextuality.

[dJH+20], poster (national conference), Chap. 4: study of entanglement in two famous

quantum algorithms: the Grover algorithm and the Quantum Fourier Transform (QFT),

the latter being a part of the Shor algorithm.

[dJH+21], published (Q2 international journal), Chap. 4: article version of [dJH+20] about

entanglement evaluation in Grover’s algorithm and the QFT.

[dHGM21b], poster (international conference), Chap. 7: detection of contextuality proofs

among subgeometries of binary symplectic polar spaces, with a computer.

[dHGM21a], in progress, Chap. 7: article version of [dHGM21b] about contextuality

proofs among subgeometries of binary symplectic polar spaces.

[SdHG21], published (Q1 international journal), Chap. 8: classification of polar sub-

spaces of W(2N − 1, 2) according to several characteristics, such as the number of their

negative lines or the distribution of types of observables.

A website aggregating the pieces of code involved in each article was also created [dB21].

It is a hub for quantum verification code distribution for our team, and was also used to

host other pages such as the 2019 GT IQ’s days web page which we organized, GT

IQ being CNRS’s task force on quantum information, annually meeting to exchange on

quantum information related works. In addition of helping organizing 2019’s meeting, I
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presented there some of my work on Mermin’s polynomials. It was a global will for me to

exchange on quantum computing as broadly as possible: in this effort, in addition to some

presentations directly related to my work, I presented quantum computing to quantum-

agnostic people, such as the team of researchers of my lab, other Ph.D. students, and

even motivated high school students.
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This part aims at presenting some basic notions necessary for understanding the work

accomplished during these last three years. Not every notion studied are presented here

though, since some notions are needed only for the understanding of a restricted part of

my work. Such notions are introduced, where they are needed, in order to avoid having

an unreadable block of definitions, followed by some work far from the definitions, such

as one may need to go back to the present part to recall the definitions. This approach

though has the disadvantage that the definitions are not centralized, which results in the

fact that they may be hard to find if need be. The solution to this problem is an Index on

page 145. The present part presents an introduction to formal methods in Chap. 1 and

an introduction to quantum computing in Chap. 2.





1

FORMAL METHODS

The aim of this thesis being to work toward quantum program verification, one needs to

first establish a baseline for general program verification. A program can be said to be

verified if some methods ensuring that it fulfills its objectives have been applied.

These methods can be classified in two broad categories: they can either be static or

dynamic. Static analysis of the code does not run the code, and analyses it without

execution, and dynamic, on the other hand, does run the code. Some methods of static

analysis are deductive verification, where the code and its specifications are used to

generate proof obligations; or abstract interpretation, where domains for the variables are

considered instead of their exact values, in order to obtain information about the domain

of the output.

These methods are complementary: because of their real-world implementation, even

though the program may not have any undesired behavior in theory, it may behave unex-

pectedly when confronted to other surrounding systems. Since a single method does not

suffice to definitively certify the correctness of a program, I consider some applications of

three of the above mentioned methods: one static – deductive verification in Sec. 1.1 –

and two dynamics – runtime assertion checking in Sec. 1.2 and program testing in Sec.

1.3.

1.1/ DEDUCTIVE VERIFICATION

When considering software engineering, some may only think about writing the intended

software, but a task at least as important is to ensure that the software does what it is

supposed to do. In mathematics, the only way to tell that an equation is valid is to prove

it. Computer science has its roots in mathematics, as the Pascal’s Pascaline [VPL19]

for restricted calculations, the Babbage’s analytical engine [Bro82] for more general cal-

culation and Turing’s Bombe [Gre14] for cryptography are testimonies. This embedding

of computer science in mathematics from the very beginning gives us an insight of why

11
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programs can be seen as mathematical functions, operating on the memory of the com-

puter. This gives us an intuition on the reason why proving properties about a program is

even possible. There are several ways to achieve such proofs [Flo67, Hoa69, Dij75]. In

Hoare logic (also called Floyd-Hoare logic), a program has a precondition (a logic formula

on the inputs of the program), and a postcondition (a logic formula on the outputs of the

program), the aim being to prove the postcondition if the precondition is met. Each atomic

statement composing the program having its own pre and post condition (the core of the

proof is to find them), the proof is complete when the prover (be it a human or a program)

is able to stitch them together.

In order to prove properties of a program using Hoare logic, one presents all the needed

information as a triple {P}p{Q} where P is the precondition, p the program, and Q the post-

condition. This way, reasoning about the program is quite straight forward, the program

being decomposed as a sequence of operations, and each operation having some known

effects on the logic. For example, combining sequentially two programs p and p′ is done

as follows: {P}p{Q}{Q}p′{R}
=⇒ {P}p; p′{R}.

1.2/ RUNTIME ASSERTION CHECKING

Unfortunately, it can be very hard to prove a program. This is why a software engineer has

other tools on his belt to ensure that a software is doing what it is meant to do. Runtime

Assertion Checking (RAC in short) is the process of evaluating various properties while

the program is running. It ensures that the program is not misbehaving and sends a signal

when it is. The mechanism of exceptions(in Python, Java, and more...) can be seen as

an example of RAC. RAC is most often used in development to help the programmer to

have a clear vision of the state of the memory, and assertions are generally dropped in

production (once the program is executed by its end users). This means that RAC has

a positive influence on the behavior of the code, but contrary to deductive verification,

it does not provide any guarantee. This brings us to a very broad category of software

development methods, which can use RAC but are not limited to it: testing.

1.3/ TESTING

Testing in software design has a huge role in designing well behaving software. Testing

is also a common practice in many other engineering domains. Software testing can be

automated, to be as extensive as possible. Ideally, any situation presented to a software
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has been previously tested, and the behavior of the software is known ahead of time.

But this is almost never possible as the number of combinations of the inputs of the

software is very often considerable. For this reason, various methods of testing have

been introduced to cover a spectrum of situations as wide as possible. Some examples of

test method are unitary testing (where functions are tested independently of each other,

as a form of divide and conquer strategy), model based testing (where a model of the

world is theorized around the software to synthesize tests close to real world situations),

analysis of tests coverage (to assess what parts of the code have been tested), ...

More information about software testing and RAC can be found in reference manuals,

such as [UL07]. But beyond those specific practices, verification always focuses on prop-

erties. Most commonly, those properties are about correctness, speed or efficiency, but

this rises the question of quantum properties: which one will eventually be central in quan-

tum programs? A first lead would be about accessing which properties could be verified,

such property should be decidable, but other conditions may need to be added.





2

QUANTUM INFORMATION

Quantum physics was established at the beginning of the 20th century and progress in

the understanding of its core concept – the quantization of energy – triggered revolution-

ary changes in the understanding of information flow in our universe. From the beginning,

information flow was at the heart of the dilemmas about quantum physics, with for exam-

ple Einstein speaking about spooky actions at a distance: quantum mechanics seemed

to break the limit of the speed of light for the transfer of information, which is impossible

in the current understanding of the physics of our universe. This very dilemma has since

been solved, without requiring us to reconsider Einstein’s relativity, but the questions

about information flow in quantum mechanics have been the source for a new field, quan-

tum computing: a way to manipulate quantum systems in order to perform computation

out of reach for our “classical” computers.

These computations unavailable to our classical computer require the understanding of

some elementary mechanics of quantum computing. The elements presented in this

chapter will not cover all possible paradigms but they will give the reader a broad un-

derstanding of quantum computing. This understanding will be completed as needed in

Parts II and III of this manuscript. Sec. 2.1 is a presentation of essential notions of quan-

tum computing, Sec. 2.2 shows how quantum algorithms can be represented, both for

human reading and machine usage, Sec. 2.3 gives a short state of the art for quantum

verification, and Sec. 2.4 presents some quantum properties central for this thesis.

2.1/ COMPUTATION MODEL

The most famous model of automated computation is the Turing machine [Pos36]. It

is composed of a data storage, a program storage and a read-write head. At the very

beginning of computer science, when the name of the field was not even established yet, it

was shown that this machine could perform any arbitrary computation. Our computers are

now only refined implementations of this Turing machine. The model used for quantum

15
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computing has notable similarities: a memory – qubits registers – and a program – a

sequence of read-write operations. These elements will be presented in this section.

In all this thesis, we work on finite numbers of qubits. A qubit – or quantum bit – is the

basic unit for quantum computation. A single qubit is most often represented as a two

dimensional unit vector. In this vector space, the canonical basis is the set of vectors{(
1
0

)
,
(

0
1

)}
. Those vectors are denoted |0⟩ – read “ket zero” – and |1⟩ – read “ket one” –,

following Dirac’s “bra-ket” notation. They are the quantum equivalent to the classical bits

and are called the computational basis. But since the space of states is a vector space,

any other basis can be chosen to perform computations.

This vector representation does not allow for noisy systems. But since my work does not

study them, we can consider qubits as vectors without any further loss of generality.

The laws of quantum mechanics dictate that the vector space in which we operate must

be a complex Hilbert space, and that states in this space must be normalized. This lets

us write a single qubit as |φ⟩ = a |0⟩ + b |1⟩ =
( a

b
)

with a, b ∈ C and |a|2 + |b|2 = 1. We can

now express a state composed of several qubits. If the qubits are on the computational

basis, we write them as |0..0⟩, |0..01⟩, |0..10⟩,... |1..1⟩. The numbers in the ket notation are

the integers from 0 to 2n − 1 in binary basis, with n being the number of qubits, so we add

some simplifying notations by declaring that the computational basis is the set of vectors

{|0⟩ , ..., |N − 1⟩} with N = 2n (there are 2n combinations of 0’s and 1’s of length n). With this,

a general vector of n qubits is written as |φ⟩ =
∑N−1

i=0 ai |i⟩ with
∑N−1

i=0 |ai|
2 = 1. One can also

represent two states side by side, for example if we have two registers1 with the state |φ1⟩

on the first one and |φ2⟩ on the second one, then the state of the whole system will be

defined as |φ⟩ = |φ1⟩ ⊗ |φ2⟩. The ⊗ operator is called the tensor product or the Kronecker

product, and it has the following effect: if |a1⟩ and |a2⟩ are two base vectors with a1 and

a2 the binary representation of some numbers, then |a1⟩ ⊗ |a2⟩ = |a1a2⟩ where a1a2 is the

concatenation of the two binary representations. The effect of ⊗ on general vectors can

be deduced by linearity of the tensor product.

Furthermore, the tensor product can be extended to the whole Hilbert space. Say we

have the state |φ⟩ in the Hilbert space H , if |φ⟩ = |φ1⟩ ⊗ |φ2⟩ with |φ1⟩ from H1 and |φ2⟩ from

H2, then we can writeH = H1 ⊗H2. And we also use the power notation: for any objects,

O ⊗ O ⊗ . . . ⊗ O with n O’s can be written O⊗n.

The states are modified along the computation, most commonly through gates: like logic

gates for classical computers, quantum gates have an effect on the qubits they operate

on, which is dictated by their semantics, their formal meaning. The most common way to

express the semantics of a gate is by the matrix having the following effect on the state: if

1A register is a figurative location for information to be stored. In our quantum computing context, we say
that a register contains one or several qubits. The states can be seen as snapshots of the registers at a
given time.
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the state |φ⟩ goes through a gate of matricial semantics M, then the state evolves to |φ′⟩ =

M |φ⟩. From this point on, when this is no cause for confusion, we will call M a gate which

has the matricial semantics M. These gates must follow some mathematical restrictions.

In particular, they must be reversible and their inverse is always their conjugate transpose,

such matrices are said to be hermitian. Note that the conjugate transpose of an operator

is called its adjoint and is noted O† = O
T

where OT is the transpose of O, i.e. the matrix

such that the element of the ith line and jth column is OT
(i, j) = O( j,i).

Let us consider some examples of gates. The most common gates are the Pauli matrices:

X =

0 1

1 0

 ,Y =
 0 i

−i 0

 and Z =

1 0

0 −1

 .
They generate the Pauli group, containing the matrices {sI, sX, sY, sZ/s ∈ {1,−1, i,−i}}.

These gates are in close relation with the computational basis, as well as other common

bases such as {|+⟩ , |−⟩} =
{
|0⟩+|1⟩
√

2
, |0⟩−|1⟩√

2

}
. The Hadamard gate H lets us switch between

these bases, with the following semantics: H = 1√
2

(
1 1
1 −1

)
(|0⟩

H
←→ |+⟩ and |1⟩

H
←→ |−⟩). It

often the source of superposition in quantum algorithm.

Those are the most common one-qubit gates, but some multi qubit gates happen to be

very common too. Firstly, a gate can be controlled: one or several qubits can make the

gate behave as a wire if one of them is equal to |0⟩ and as the controlled gate if they are

all equal to |1⟩. Any gate can be controlled in this manner, but CNOT and the Toffoli gate

are the most well known examples. CNOT or Controlled-NOT or Controlled-X gives us

another glimpse in the role of the Pauli X gate: X |0⟩ = |1⟩ and X |1⟩ = |0⟩, so X acts as the

NOT gate for the computational basis, hence the CNOT name. The matricial semantics

of the CNOT gate is:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


It often has a role to play in the creation of entanglement, a quantum property presented

in Sec. 2.4.1. Another useful gate is the Toffoli gate. It is a controlled CNOT and its
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matricial semantics is:

T =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Notice a pattern between CNOT and T : the construction of the semantics matrix of a

controlled gate is generalizable as follows. The control gate CG of an arbitrary gate G is

built using the identity matrix I of same size as G as such: CG =
(

I 0
0 G

)
.

A set of gates is said to be universal if it can transform any state of the Hilbert

space into any other state of the Hilbert space using only transformations from the

set of gates. There are several examples of universal sets of gates. A widely

used one is given by the rotation gates – generalization of the Pauli gates –, the

phase shift gate and CNOT . The matricial semantics of the rotation gates are

Rx(θ) = exp(−iXθ/2) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
,Ry(θ) = exp(−iYθ/2) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
,Rz(θ) =

exp(−iZθ/2) =
( exp(−iθ/2) 0

0 exp(iθ/2)

)
. The matricial semantics of the phase shift gate is on the

other hand P(θ) =
(

1 0
0 exp(iθ)

)
.

At this point, the states can be modified, but not returned to the user. In order to be able

to read the content of a qubit register we use observables. An observable is a self-adjoint

operator in a Hilbert space. It is used to encode the measure of a physical property of a

given system. The Pauli gates are examples of such observables. An observable has a

basis attached as it is diagonalizable: its basis is composed of its eigenvectors. Similarly,

the eigenspaces are sometimes referred to as subspaces of the observable.

A common structure for observables can be given by a family of orthonormal vectors (|ϕi⟩)i

(i.e. vectors such that
〈
ϕi

∣∣∣ϕ j
〉
= δ

j
i

2), then
∑

i λi |ϕi⟩ ⟨ϕi| is an observable, with ⟨ϕi| – called

“bra ϕi” – the transpose conjugate of |ϕi⟩. In this case (|ϕi⟩)i is said to be the basis of the

observable.

The possible values returned by a measure are the eigenvalues of the corresponding

observable. But a measure has more impact than just returning the measured value

to the user. Indeed, if the measured state is a basis state of the observable, then the

measure will simply return the proper eigenvalue, but if the state is in a superposition of

vectors of the basis, then the measure will be probabilistic.

In the general case, the measure projects the state on an eigenspace of the observable

2δ
j
i is the Kronecker operator: δ j

i = 1 ⇐⇒ i = j otherwise δ j
i = 0
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with a probability equal to the norm of the projected state, then re-normalizes it, and

returns the eigenvalue corresponding to this sub-space.

A more detailed explanation would be the following: take the observable O for the mea-

sure, let Eλ be the eigenspace associated with the eigenvalue λ, and note meas(O, |φ⟩) the

measure operation, then the measure will have two effects, one on the state measured

|φ⟩, noted 7→, and the second will be the value returned, noted ⇝. Let also |φ⟩λ be the

projection of |φ⟩ on Eλ, |φ⟩λ = Pro j (|φ⟩ , Eλ), then

meas(O, |φ⟩) :


|φ⟩ 7→

|φ⟩λ
||φ⟩λ|

⇝ λ
with probability

∣∣∣|φ⟩λ∣∣∣2 .
Because of normalization, it is reassuringly easy to check that the sum of all probabilities

is equal to 1.

For example, the usual observable for the computational basis is Z =
(

1 0
0 −1

)
. Its eigenvec-

tors are |0⟩ associated to 1 and |1⟩ associated to −1. From this, we can deduce that the

measure of |ϕ⟩ = a |0⟩+ b |1⟩ has a probability |a|2 to return 1 and a probability |b|2 to return

−1 when it is measured by this observable.

The qubit formalism is the mathematical tool used to describe a physical experiment, like

manipulating the spin of electrons, or the polarization of photons or the energy level of an

atom. In each of these cases, the details of the implementation are quite different, and

they can be found in the literature with different notations, for example instead of |0⟩ and

|1⟩ the polarization of light can be denoted as |↑⟩ and |←⟩. The observable represents the

measuring instrument used by the entity operating it (the physicist in a lab for example).

Finally, as stated previously, I only consider non-noisy states in this thesis, also called

pure states. Pure states are in opposition with mixed states, described by density matri-

ces instead of vectors.

2.2/ ALGORITHMS AND LANGUAGES

A quantum algorithm is a series of statements involving quantum computing notions.

There are several ways to formalize quantum algorithms, a very common one is to se-

quentially describe all the gates operating on the data. This formalism is called quantum

circuitry and consists of wires representing the qubits, on which gates and measures

operate.

Fig. 2.1 depicts such a circuit, and we can observe on this figure some key features of

a circuit: it is generally written from left to right, it has an input, some transformations,

and an output. For a given algorithm, some inputs may not be data to be worked on,
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|x1⟩ H R2
S WAP

|x2⟩ • Rn−1

Figure 2.1: Example of quantum circuit

but simply additional wires to temporarily store data onto, and some output data can be

discarded. This would be the equivalent of local variables in a classical program.

For many reasons, the use of circuits is very restrictive, both to work with and to think

with. Here is a short list of shortcomings of quantum circuits:

• they do not allow loops;

• they are not a compact way to store a program;

• the gates involved generally do not allow for registry size change; which implies that

each local variable must have its own space in the inputs and outputs.

But all these shortcomings have solutions by extending the language. This direction

does not seem that promising though: since circuits were never meant to be a compact

and efficient way to represent programs. They are mostly a pedagogic tool to visualize

transformations.

Quantum circuits could be compared to assembly language, as it is a basic way of laying

down the instruction for the processor to execute them. But even then, most assembly

languages allow for subroutines, which is not the case for quantum circuit. This is why an

early machine language for quantum programs was QASM [BI17] – quantum assembly –,

a language to store basic quantum programs organized sequentially (with the addition of

subroutines). This format is practical to transfer program from a computer to an other, but

lacks the flexibility of modern languages. For this reason, Domain Specific Languages

(DSL) compilable to QASM have been created in these modern languages to ease the

creation of complex quantum programs. The python library Qiskit [Cro18] from IBM is

an example of such a DSL: it allows its user to build quantum programs, and to run

them either on a simulator or on their quantum processors available through internet. In

addition to this library, IBM published a web interface to graphically create circuits and

run them called Composer shown in Fig. 5.1. These efforts to make quantum computing

easily available to beginners is a key point toward making more users at ease with the

quantum computing paradigm. Through the rich interface of Qiskit, IBM’s computer usage

is not limited to beginners. We even used it for some of our experiments, presented in

Chap. 5.

But since quantum computing has such a different underlying structure compared to clas-

sical computing, some have even wondered if operation sequences is the proper format

for quantum programs. Diagrammatical languages such as ZX-calculus [Bac14] were cre-
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Figure 2.2: User interface for IBM’s composer

ated as a potential solution to this problem. ZX-calculus works by abstracting the notion

of gate as a notion of node, nodes are more elementary but have a much more powerful

set of rewriting rules, allowing representing quite complex programs as fairly compact dia-

grams. It is still very much a work in progress, but it promises to enable powerful quantum

compilers, provers, and more generally intermediate data manipulation tools (thanks to

its rewriting rules) [Kv20]. ZX-calculus is not the ultimate representation for quantum pro-

grams though: because of its abstract nature, it is not easy to come up with new programs

directly in ZX-calculus.

Figure 2.3: Example of ZX-diagram

Since circuitry is still the most common basis for quantum algorithms, we will use it in

spite of its limitations.

2.3/ QUANTUM VERIFICATION

In Sec. 1.1, I defined classical deductive verification: this notion was generalized to quan-

tum computing. Since this thesis aims at producing tools to enable quantum verification, I
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explore in this section what quantum verification is at this time. Although the reader must

keep in mind that this is a quickly evolving field, meaning that the picture depicted here

may be quite different from the actual usage of quantum verification.

After learning about Hoare logic and in the path to transferring classical skills to quan-

tum computing, one would logically have the idea of generalizing it as quantum Hoare

logic [Yin18]. This work is quite recent and has a limited scope, but is nonetheless an

interesting lead on the kind of methods used to reason about quantum programs. We did

not follow this lead though because the idea seemed flawed at its root: the authors of

this work replaced pre and postconditions by quantum predicates, which are in this case

observables of the system. This usage of global observables is problematic because un-

realistic: observables’ sizes grow exponentially with the number of qubits. And even then,

this is assuming than one considers a finite number of qubits: in this work, to simplify the

thought process, the system is considered of infinite size, allowing the logic to ignore any

size calculation.

Another promising project is Qbricks, published this year (2021). It uses Why33 to verify

quantum algorithms [CBB+21]. This code was published too late for us to use it, but it

allowed us to focus on specific quantum properties to study, in the goal of using them for

specifying quantum problems. The idea behind this reasoning being that more information

available for specification would enable easier choice of properties used for said speci-

fication. Why3 is a platform for deductive program verification providing a language for

specification and programming, called WhyML, and relying on external theorem provers,

both automated and interactive, to discharge verification conditions. Using Why3, Qbricks

was able to automatically prove the correction of several quantum algorithms.

This last point is in fact what we chose to focus on: instead of directly tackle quantum

verification, we studied properties that may come useful for specification of quantum pro-

grams.

2.4/ QUANTUM PROPERTIES

As mentioned in Sec. 2.3, verifiable quantum properties could be keys to an efficient

quantum verification process. In this context, we focused on two widespread and related

properties: entanglement and contextuality. Those two properties are historically linked

to differentiating quantum experiences from classical ones, but with the advancement in

their understanding, they became more granular, which implies that these properties are

not only destined to differentiate between quantum and classical situations, but can now

differentiate between different classes of quantum states. These properties have also

3http://why3.lri.fr/

http://why3.lri.fr/
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proved themselves to be core components of quantum programs and protocols (quantum

teleportation, quantum telepathy games, ...).

2.4.1/ ENTANGLEMENT

Entanglement is defined using separability. A state is separable if it can be decomposed

as a tensor product of single qubits states. If a state is not separable, then it is entangled.

In other words, a n-qubits state |φ⟩ ∈ H⊗n is entangled iff there is no (|φi⟩)i∈[1..n] ∈ Hn such

that |φ⟩ = |φ1⟩ ⊗ . . . ⊗ |φn⟩.

A famous example of entangled state is the Bell state |ψ⟩ = 1√
2
(|00⟩ + |11⟩). This state is a

great example of the strange repercussions of the quantum measure. Indeed, measuring

in the computational basis either of the first qubit of this state would project the second

qubit to be the same state as the one measured. At this point, the name “entanglement”

for this phenomenon should make more sense: entangled particles have effect on one

another, no matter what the distance is.

Another phenomenon is of importance: non-locality. It is a phenomenon where action on

a part of the system has immediate effects on another part of the system, and it is enabled

by entanglement. This is in fact the property that threw Einstein off when he first learnt

about it, because it seemed to break the speed of light limit for transfer of information.

But because of the limitations of quantum mechanics, this phenomenon in fact does not

allow for information transfer faster than light [ER88].

Since the first days of quantum information, the process used to detect entanglement has

been refined to return a continuum. I will call in this thesis degree of entanglement – or

simply entanglement when there is no possible confusion – this continuous measure of

entanglement.

One may think that the entanglement being a continuum, it would allow to discriminate

between any two states. But this is in fact false. Indeed, due to how entanglement is

defined, some operations on a state do not affect its degree of entanglement. This is

formalized by the LU, LOCC and SLOCC classes. The term comes from set theory,

where a class or equivalence class is defined for an equivalence relation R as a set of

elements C such that ∀a, b ∈ C, aRb.

LU stands for Local Unitary, and it is the group of unitary operators, i.e. operators O such

that their adjoint is their inverse OO† = I, that acts separately on all qubits. Mathematically,

an LU transformation is an operator O such that ∃ (Oi)i∈[1..n] ∈ U2 s.t. O = O1 ⊗ . . . ⊗ On

with U2 being the group of complex unitary matrices of size 2. With this, we can define

LU-equivalent states as states equal to each other up to a LU transformation i.e. |φ1⟩ and

|φ2⟩ are equivalent iff there exists a LU transformation O such that |φ1⟩ = O |φ2⟩. LU is a
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natural group to consider since noiseless quantum operations are unitary: LU then only

adds one restriction to this.

LOCC stands for Local Operations and Classical Communication, it is a broader set of

operations than LU since it contains single qubits unitary operations, but also measure-

ments and classical communication. An example of classical communication in quantum

computing would be a gate applied only if a previous measurement had a given value.

In the case of pure states though, LU and LOCC have the same equivalence classes

[Vid00, Aul12].

Finally, SLOCC is the broadest class of the three. SLOCC stands for Stochastic Local

Operations and Classical Communication, and this group is the group of locally invertible

operations. Contrary to the previous two groups, SLOCC does not preserve entangle-

ment: it cannot create entanglement from a separable state, but it can change the degree

of entanglement of a state.

To recap, we have the following implications:

LU-equivalence =⇒ LOCC-equivalence =⇒ SLOCC-equivalence.

And in the case of pure states, on which I will focus in this manuscript, we even have

LU-equivalence
pure
⇐==⇒ LOCC-equivalence.

Several ways to evaluate entanglement of a state have come up along the years.

For instance entanglement variations during the execution of Grover’s algorithm have

been studied either by computing the evolution of the Geometric Measure of Entangle-

ment [RBM13, WG03], or by computing other measures of entanglement like the concur-

rence or measures based on invariants [BOF+16, WG03, HJN16]. Among those mea-

sures of entanglement, only the last one is presented in this manuscript, in Appendix C

defining the Cayley hyperdeterminant. Similarly, for Shor’s algorithm and in particular to

study the variation of entanglement within the QFT, numerical computation of the Geo-

metric Measure of Entanglement was carried out in [SSB05]. Let us also mention [JH19]

where the evolution of entanglement in Grover’s and Shor’s algorithms is studied quali-

tatively by considering the classes of entanglement reached during the execution of the

algorithms.

The authors of [BOF+16] proposed to exhibit the non-local behavior of the states gen-

erated by Grover’s algorithm by testing a generalization of Bell’s inequalities known as

Mermin’s inequalities, based on Mermin polynomials [ACG+16, CGP+02]. Let us define

these polynomials that we will use in Part II.
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Definition 2: Mermin polynomials, [ACG+16]

Let a =
(
a j

)
j≥1

and a′ =
(
a′j

)
j≥1

be two families of one-qubit observables with

eigenvalues in {−1,+1}. The Mermin polynomial Mn(a, a′) is inductively defined

by:M1(a, a′) = a1

∀n ≥ 2, Mn(a, a′) = 1
2 Mn−1(a, a′) ⊗ (an + a′n) + 1

2 Mn−1(a′, a) ⊗ (an − a′n)
(2.1)

Note that since we only use this definition for the Mermin polynomial, we will omit the

(a, a′) part of the notation when there is no ambiguity, to improve readability.

The reader familiar with the Mermin polynomial may also be surprised by the slightly dif-

ferent definition in comparison to the one introduced in [ACG+16]. In place of our Mn(a′, a),

they had a second polynomial M′n(a, a′) obtained by interchanging all the operators with

and without the “′” mark of the definition. This is due to a simplification we introduced

noticing that M′n(a, a′) = Mn(a′, a).

Example 1: For n = 2, the Mermin polynomial is M2 =
1
2

(a1⊗a2+a1⊗a′2+a′1⊗a2−a′1⊗a′2).

When we chose a1 = Z, a2 = (Z + X)/
√

2, a′1 = X and a′2 = (Z − X)/
√

2 the operator M2 is,

up to a factor, the CHSH operator used to prove Bell’s Theorem [CHSH69].

One can note that a one-qubit observable a with eigenvalues in {−1,+1} can be written as

a normed linear combination a = αX + βY + γZ of the Pauli matrices X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
, with the constraint |α|2 + |β|2 + |γ|2 = 1.

Mermin’s inequalities

⟨Mn⟩
LR ≤ 1 and ⟨Mn⟩

QM ≤ 2
n−1

2 (2.2)

respectively formalize that the expectation value ⟨Mn⟩ of Mn is bounded by 1 under the

hypothesis LR of local realism, while it is bounded by 2
n−1

2 in quantum mechanics (QM).

The hypothesis of local realism (or principle of locality) states that an object is only af-

fected by its immediate surrounding. ⟨M⟩ is the expected value of the observable M, i.e.

a real number depending on the measured state. For the state |φ⟩, the expected value

of M is ⟨M⟩φ = ⟨φ|M|φ⟩ and it represents the average of multiple measurements of |φ⟩ by

M. This value is here refined by adding a condition on |φ⟩: ⟨M⟩LR means that |φ⟩ follows

the hypothesis of local realism, and ⟨M⟩QM means that |φ⟩ follows the laws of quantum

mechanics.

The violation of the first Mermin inequality shows non-locality which is only possi-

ble under the hypothesis of quantum mechanics and if the quantum state is entan-

gled. More precisely the maximal violation of Mermin’s inequalities occurs for GHZ-like
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states [Mer90, CGP+02, ACG+16], i.e. states equivalent to |GHZ⟩ = 1√
2
(|0⟩⊗n + |1⟩⊗n) by

local transformations.

One of the advantages of Mermin’s inequalities over other methods for evaluating entan-

glement, such as the hyperdeterminant, is that they can be tested by a physical exper-

iment. Recently the violation of Mermin’s inequalities was tested for n ≤ 5 qubits on a

small quantum computer [AL16, ABJ+20].

2.4.2/ CONTEXTUALITY

While entanglement is most often approached as an evidence of non local behavior of

quantum states, contextuality is rather about properties of compatible measurements in

quantum physics and how these measurements satisfy some contextual properties. Since

both of these phenomena are still under intensive study, their distinction is in fact quite

fuzzy, some works have even pointed toward a common phenomenon at the root of those

quantum properties [Mer93, AB11]. Historically though, entanglement and contextuality

have been put into evidence from different considerations, and this difference resulted on

different and complementary approached to tackle the studies of these properties. For

this reason, I will present contextuality as a completely separate property despite the

existing links with entanglement.

Quantum contextuality was first discovered with the work of Kochen and Specker. The

Kochen-Specker Theorem [KS67] is a no-go result that states that any classical theory

that would reproduce the outcomes of measurements in quantum physics has to be con-

textual. Here contextual means that if a classical theory predicts the outcomes of a mea-

surement, then these outcomes should depend on the context, i.e. the set of compatible

experiments that are performed before or after the measurement. In this manuscript

we only consider operator-based proof of quantum contextuality as discovered by Mer-

min [Mer93].

X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

Figure 2.4: The Mermin-Peres magic square.

Let us consider the configuration of two-qubit observables called the Mermin-Peres

square represented in Fig. 2.4. Each vertex represents a two qubit observable con-

sisting of measurement of each particle in the X,Y or Z directions or no measurement
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(I). The lines are sets of mutually commuting observables, i.e. compatible measurement,

they form a collection of six contexts. The outcome of each individual measurement is +1

or −1 as the Pauli matrices square to identity. However the product of the operators on

each context is either +I (simple line) or −I (doubled line). A consequence of the laws

of quantum physics is that the product of the measured eigenvalues of each observable

of a given context has to be an eigenvalue of the product of the observables. Therefore

the measurements of each context are subjected to constraints imposed by the sign of

the context. While all these constraints are satisfied by the measurement of any context

if we follow the rules of quantum mechanics, it is clear that there is no classical function

that can assign +1 or −1 to each node of this square configuration and satisfy all the

constraints. Indeed if we multiply all the lines of the Mermin-Peres square one should get

−I while if we consider the product of the outcomes of each node provided by the classi-

cal function one should get (±1)2 × · · · × (±1)2 = 1 as each node belong to two contexts.

This contradiction shows that, in order to satisfy the constraints, the classical function

should be context-dependent, i.e. provide different results according to which context is

measured. This argument furnishes a proof of the Kochen-Specker Theorem.

In chapters 7 and 8 we will study configuration of observables, like the Mermin-Peres

square, that provide alternative proofs of the Kochen-Specker Theorem. We will call such

configurations contextual.
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When considering code behavior, the first idea that comes in mind for checking it is to

run it. This is the reason why I started building a simple simulator while starting my

state of the art, to be able to easily play with the algorithms I crossed in my readings.

Although many quantum circuit execution simulators already existed, creating my own

one allowed me to tweak it to my needs, and this advantage had only a minimal cost, due

to the low complexity of building a quantum circuit simulator for such needs. The created

simulator and some examples of application are described in Chap. 3. The following work

resulting in an article [dJH+21] composes the Chap. 4. This second chapter, in addition to

explaining Grover’s algorithm and the QFT, presents our study of entanglement evolution

in these algorithms. The specificity of this entanglement study is that our measure of

entanglement is realizable on an actual quantum computer, which enabled me in Chap.

5 to rewrite my code to be able to use Qiskit to perform the same computation on IBM’s

publicly available quantum processor. All the code written for each of these chapters is

freely available and documented on [dB21].
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3

A SIMULATOR FOR QUANTUM

VERIFICATION

To start studying quantum verification, we first build a small quantum circuit simulator

in Python, using a mathematics software system called SageMath, built on top of exist-

ing packages such as NumPy, SciPy and others... It was used to simulate Deutsch and

Deutsch-Jozsa algorithms (resp in Sec. 3.2 and Sec. 3.3), and to check experimentally

that they both operate as they are supposed to. In addition to the added control over

the computation thanks to the homemade simulator, or maybe because of it, I was able

to introduce exact computation (in opposition to floating point precision computation) of

quantum states using cyclotomic fields. This approach was added as an option to be

toggled, and event though it was not used in the published article because of its time exe-

cution cost (as implemented, it was more than 100 times slower than using floating point

precision) it is promising because it is easier to formally reason on exact computation than

on intervals. This could be useful for formal reasoning approaches. A few other additional

benefits of creating an in-house simulator are presented along this chapter, such as the

freedom of the input format, the ease of interoperability with other in-house software, and

custom format for execution logs.

3.1/ THE SIMULATOR

The simulator is extremely simple, a circuit is given to it as a list L of lists of matrices

as well as a initial state V0 and the simulator will return the list of states between the

elements of L. Each element l of L represents a layer of the circuit and each element

of l represents an operation carried on one or several wires. All the operations on a

layer are considered as ran at the same time. For an example of input circuit, if H is the

Hadamard matrix, I2 and I4 are the identity matrix (respectively in dimensions 2 and 4)

and X is the first Pauli operator, then the circuit depicted in Figure 3.1 is represented by

35
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the list [[H,I4], [X,X,I2], [I4,H], [H,H,H]]. The identity is present in this formalism

to represent the absence of operation at its position.

H X H

X H

H H

Figure 3.1: Circuit representation of [[H,I4],[X,X,I2], [I4,H], [H,H,H]]

The quantum measure presented in Sec. 2.1 can be simulated at any step of the circuit.

For example, in Fig. 3.2, the output of the simulator would contain the five states [V0..V4],

and the measure would be simulated after the computation of V3.

|V0⟩ |V1⟩ |V2⟩ |V3⟩ |V4⟩

H X H

S WAP
H H

Figure 3.2: Example of mid circuit measure

The simulator’s code is shown in listing 3.1. Note that the version here is somewhat a

simplification in comparison to the version distributed on GitHub. This is done to make

this manuscript more readable, but no core functionality has been altered by this simpli-

fication. This function takes as input the circuit and the initial state, computes for each

layer the matrix corresponding to the whole layer, and then computes the state after the

layer by multiplying the previous state by the layer matrix.

def run(matrix_layers, V_init):
V_running=cp.deepcopy(V_init)
vectors_list=[V_running]
matrices_list=[]
for matrix_layer in matrix_layers:
layerMatrix=Matrix([[1]])
for running_matrix in matrix_layer:
layerMatrix=kronecker(layerMatrix, running_matrix)

V_running=layerMatrix*V_running
matrices_list.append(layerMatrix)
vectors_list.append(V_running)

return vectors_list

Listing 3.1: Main function of the simulator

In fact, the complete version of this function has one more functionality, used only for

experimentation: it also returns the matrix corresponding to each layer (the Kronecker
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product of all matrices of the layer). In addition to this, the run function has a display

option: it can create LATEX commands for each state and layer matrix as shown in listing

3.2 which is the output of the command run(layers,v,output=True). This is done in

order to ease presentation of quantum algorithms by automating them: if one uses this

simulator to explain an algorithm, he will be able to add directly in his LATEX presentation

the steps of the algorithm using these commands. As the simulator is a work in progress

though, there are obviously things to ameliorate. For example, implementing simplifica-

tions such as 1 |1⟩ → |1⟩ or 1
2

√
2→ 1√

2
.

\newcommand{\Vzero}{\left(1,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}
\newcommand{\Mone}{\left(\begin{array}{rrrrrrrr}
\frac{1}{2}\,\sqrt{2}&\frac{1}{2}\,\sqrt{2}&0&0&0&0&0&0\\
\frac{1}{2}\,\sqrt{2}&-\frac{1}{2}\,\sqrt{2}&0&0&0&0&0&0\\
0&0&\frac{1}{2}\,\sqrt{2}&\frac{1}{2}\,\sqrt{2}&0&0&0&0\\
0&0&\frac{1}{2}\,\sqrt{2}&-\frac{1}{2}\,\sqrt{2}&0&0&0&0\\
0&0&0&0&\frac{1}{2}\,\sqrt{2}&\frac{1}{2}\,\sqrt{2}&0&0\\
0&0&0&0&\frac{1}{2}\,\sqrt{2}&-\frac{1}{2}\,\sqrt{2}&0&0\\
0&0&0&0&0&0&\frac{1}{2}\,\sqrt{2}&\frac{1}{2}\,\sqrt{2}\\
0&0&0&0&0&0&\frac{1}{2}\,\sqrt{2}&-\frac{1}{2}\,\sqrt{2}
\end{array}\right)}
\newcommand{\Vone}{\frac{1}{2}\,\sqrt{2}\ket{000}+\frac{1}{2}\,
\sqrt{2}\ket{001}}
...
\newcommand{\Mthree}{\left(\begin{array}{rrrrrrrr}
1&0&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&0&1&0\\
0&0&0&0&0&1&0&0\\
0&0&0&0&0&0&0&1
\end{array}\right)}
\newcommand{\Vthree}{\frac{1}{4}\,\sqrt{2}\ket{000}+\frac{1}{4}\,
\sqrt{2}\ket{001}+\frac{1}{4}\,\sqrt{2}\ket{010}+\frac{1}{4}\,
\sqrt{2}\ket{011}+\frac{1}{4}\,\sqrt{2}\ket{100}+\frac{1}{4}\,
\sqrt{2}\ket{101}+\frac{1}{4}\,\sqrt{2}\ket{110}+\frac{1}{4}\,
\sqrt{2}\ket{111}}
Usage: $\Vzero$ eventually becomes $\Vthree$.
Compiled result:
Usage: 1

2

√
2 |000⟩ + 1

2

√
2 |001⟩ eventually becomes 1

4

√
2 |000⟩ + 1

4

√
2 |001⟩ + 1

4

√
2 |010⟩ +

1
4

√
2 |011⟩ + 1

4

√
2 |100⟩ + 1

4

√
2 |101⟩ + 1

4

√
2 |110⟩ + 1

4

√
2 |111⟩.

Listing 3.2: Result of the LaTeX printing option of the simulator with a compiled usage
example

Another display option is available as an auxiliary function: a function to display circuits.

Examples of use are given in listing 3.3.
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>>> circuit=[[('I',2),('H',1)],[('H',1),('H',1),('I',1)],[('I',1),('S',2)]]
>>> print_circuit(circuit, to_latex=False)
---H---
---H-S-
-H---|-
>>> print_circuit(circuit, to_latex=True)
\begin{align*}
\Qcircuit @C=1em @R=.7em {
& \qw & \gate{H} & \qw & \qw\\
& \qw & \gate{H} & \multigate{1}{S} & \qw\\
& \gate{H} & \qw & \ghost{S} & \qw
}
\end{align*}

Listing 3.3: Results of the printing function.

3.2/ DEUTSCH’S ALGORITHM

The first example on which I tried the simulator was Deutsch’s algorithm [Deu85]. Let us

see how I implemented it and how I verified it.

Deutsch’s algorithm takes in a binary function f : {0, 1} → {0, 1} and returns in a single

call of f whether the function is constant or not. The important part here is that the result

is computed in a single evaluation of f , and it will later be developed into a slightly more

impressive generalization.

To add some vocabulary, f is said to be a balanced function if | f −1({0})| = | f −1({1})| where

f −1(B) is the inverse image of the set B and |A| is the cardinal of the set A. Given this,

Deutsch’s algorithm will return true if f is balanced and false if f is constant. In {0, 1} →

{0, 1}, f can only be one of those two.

To do so the function is encoded into its quantum equivalent, the oracle gate U f built such

as

U f (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ | f (x) ⊕ y⟩ . (3.1)

with ⊕ being the XOR operator.

The function creating the corresponding matrix is U defined in listing 3.4.

def U(f):
result=Matrix(4, 4)
for i in range(0, 4):
result[i,(i//2)*2 + (i%2)^^(f[i//2])]=1

return result

Listing 3.4: Function creating the oracle for Deutsch’s algorithm

In this case, f is passed as a dictionary. For example, f={0:0,1:0} is the constant
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function returning 0.

The oracle building function requires some explanation: the image of each basis vector

should be dictated by Eq. 3.1. In order to do this we decompose the index of the basis

vector we intend to use: the ith basis vector has its index decomposed as i = 2i1 + i0, i1i0
is the binary representation of i, which means that i1 corresponds to |x⟩ and i0 to |y⟩ in

Eq. 3.1. The image of this basis vector by the oracle will have its only non null entry in

row j = 2i1 + i0 ⊕ f (i1), this computation being the core of the content of the for loop in

listing 3.4 (in SageMath, ^^ is the bitwise XOR operator). The binary representation of j

is i1(i0 ⊕ f (i1)), which gives us the correspondence with Eq. 3.1.

The U f gate is then used as shown in Fig.3.3.

|φ0⟩ |φ1⟩ |φ2⟩
∣∣∣φ′2〉 |φ3⟩ |φ4⟩

|0⟩ H
U f

H

|1⟩ H

Figure 3.3: Deutsch’s algorithm in circuit formalism

We recall that the matrix semantics of the gate H is equal to 1√
2

(
1 1
1 −1

)
.

Let us develop the calculus to understand Deutsch’s algorithm. For this calculus, each

step φi corresponds to a number i of gates layer passed, and the layers are H⊗H,U f and

H ⊗ I:

φ0 = |0⟩ ⊗ |1⟩

φ1 =
1
2

(|0⟩ + |1⟩) ⊗ (|0⟩ − |1⟩)

=
1
2

(|0⟩ ⊗ (|0⟩ − |1⟩) + |1⟩ ⊗ (|0⟩ − |1⟩))

φ2 =
1
2

(|0⟩ ⊗ (| f (0) ⊕ 0⟩ − | f (0) ⊕ 1⟩) + |1⟩ ⊗ (| f (1) ⊕ 0⟩ − | f (1) ⊕ 1⟩)

At this point, if f (0) = 0, | f (0) ⊕ 0⟩ − | f (0) ⊕ 1⟩ = |0⟩ − |1⟩, and otherwise it is the opposite.

The idea is the same for f (1).

=
1
2

(
(−1) f (0) |0⟩ ⊗ (|0⟩ − |1⟩) + (−1) f (1) |1⟩ ⊗ (|0⟩ − |1⟩)

)
=

(−1) f (0)

2

(
|0⟩ + (−1) f (0)⊕ f (1) |1⟩

)
⊗ (|0⟩ − |1⟩)

At this point we can ignore the last qubit, because it does not change anymore, and the
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global phase (complex multiplier of norm 1), because it has no effect on the measure.

φ′2 =
1
√

2

(
|0⟩ + (−1) f (0)⊕ f (1) |1⟩

)
φ3 =

1

2
√

2

(
|0⟩ + |1⟩ + (−1) f (0)⊕ f (1)(|0⟩ − |1⟩)

)
=

1
2

((
1 + (−1) f (0)⊕ f (1)

)
|0⟩ +

(
1 − (−1) f (0)⊕ f (1)

)
|1⟩

)
With this, if f is constant then (1+ (−1) f (0)⊕ f (1)) = 2 and (1− (−1) f (0)⊕ f (1)) = 0, which implies

that the measure will have the following effect: φ4 → |0⟩, and if f is not constant, we have

the opposite case and φ4 → |1⟩. For the reader not used to quantum computing, this is a

nice example that shows that, although the measure is probabilistic, a quantum algorithm

can be deterministic.

3.3/ A GENERALIZATION OF DEUTSCH’S ALGORITHM, DEUTSCH-

JOZSA ALGORITHM

An interesting generalization of Deutsch’s algorithm, as stated before, is Deutsch-Jozsa

algorithm [DJ92], which, this time, checks if the function is balanced or constant (it is a

precondition of the algorithm for f to be one or the other). It operates on boolean functions

with n inputs. (Note that if we do not restrict the function to be either constant or balanced,

this algorithm becomes semi-deterministic, returning 1 for any constant function, and 0

with a non-null probability for all other functions.)

The formula defining U f in this case is again Eq. 3.1, and it is built by the functions

showed in listing 3.5. The proof that the oracle has this shape is shown in Appendix A.

def U(f):
X=matrix([[0, 1], [1, 0]])
I=matrix.identity(2)
result=matrix(2*len(f))
for i in range(0, len(f)):
if f[i]==0:
result[2*i:2*i+2,2*i:2*i+2]=I

else:
result[2*i:2*i+2,2*i:2*i+2]=X

return result

Listing 3.5: Function creating the oracle for Deutsch-Jozsa algorithm

The circuit representing Deutsch-Jozsa algorithm is depicted in Fig. 3.4.

To understand the calculus implied in Deutsch-Jozsa’s algorithm, two points should be

clarified. Firstly, let us recall that |a1 . . . ak⟩ stands for |a1⟩⊗ . . .⊗ |ak⟩. We take advantage of



3.3. DEUTSCH-JOZSA ALGORITHM 41

|0⟩ /n H⊗n

U f
H⊗n

|1⟩ H

Figure 3.4: Deutsch-Jozsa algorithm in circuit formalism

this to represent arbitrary combinations of binary digits as their decimal representation:

|5⟩ = |52⟩ = |101⟩ = |1⟩ ⊗ |0⟩ ⊗ |1⟩. Secondly, when fed |0⟩⊗n, the Hadamard gate array is

creating a superposition of all states: H⊗n |0⟩⊗n = 1√
2n

∑2n−1
k=0 |k⟩, and for an arbitrary state

|φ⟩ =
∑2n−1

k=1 αk |k⟩, its Hadamard transform would be H⊗n |φ⟩ =
∑2n−1

k=1 ak

(
1√
2n

∑2n−1
j=0 (−1)k· j | j⟩

)
with k · j = k1 j1 ⊕ . . . ⊕ kn jn being the bitwise product of k and j.

Using the same tricks as in Deutsch’s algorithm proof, we have the following calculus to

prove Deutsch-Jozsa’s algorithm:

φ0 = |0⟩⊗n ⊗ |1⟩

φ1 =
1
√

2n+1

2n−1∑
k=0

|k⟩ (|0⟩ − |1⟩)

φ2 =
1
√

2n+1

2n−1∑
k=0

|k⟩ (| f (k)⟩ − |1 ⊕ f (k)⟩)

=
1
√

2n+1

2n−1∑
k=0

(−1) f (k) |k⟩ (|0⟩ − |1⟩)

φ′2 =
1
√

2n

2n−1∑
k=0

(−1) f (k) |k⟩

φ3 =
1
√

2n

2n−1∑
k=0

(−1) f (k)

 1
√

2n

2n−1∑
j=0

(−1)k· j | j⟩


=

1
2n

2n−1∑
j=0

2n−1∑
k=0

(−1) f (k)(−1)k· j

 | j⟩

Given this, the probability of measuring |0⟩⊗n is
∣∣∣ 1
2n

∑2n−1
k=0 (−1) f (k)

∣∣∣2 which is 1 if f is constant

and 0 if f is balanced. This result is validated for system sizes up to 4 qubits by the code

available on GitHub. It should be noted that these calculations were performed using the

so called exact calculation of SageMath, using cyclotomic fields [Bir67] simply by adding

the snippet of code shown in listing 3.6 and by replacing
√

2 by the newly defined sqrt2

in the code. We went no further than 4 qubits because the code at this point was still a

proof of concept.
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field=UniversalCyclotomicField()
e8=field.gen(8)
sqrt2=e8 + conjugate(e8)

Listing 3.6: Snippet of code enabling exact calculation

3.4/ CONCLUSION

In these experiments, the results were quite trivial (since both of those algorithms are

themselves quite trivial), but this proof of concept showed us that it was possible to use

this simulator on harder problems. This is exactly what we did when using it to study

Grover’s algorithm and the Quantum Fourier Transform (QFT) with Mermin polynomials.
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MERMIN POLYNOMIALS FOR

ENTANGLEMENT DETECTION IN

GROVER’S ALGORITHM AND QUANTUM

FOURIER TRANSFORM

This chapter reports on the content of [dJH+20, dJH+21], with some notions previously

defined in this manuscript not repeated here.

4.1/ INTRODUCTION

Quantum entanglement has been identified as a key ingredient in the speed-up of quan-

tum algorithms [JL03], when compared to their classical counterparts. Our work is in

line with previous works on a deeper understanding of the role of entanglement in this

speed-up [EJ98, BP02, CBAK13, KM06].

We focus on Grover’s algorithm [Gro96] and the Quantum Fourier Transform

(QFT) [NC10, Chap. II-Sec. 5] which plays a key role in Shor’s algorithm [Sho94]. We

choose these two examples because they both provide quantum speed-up (quadratic for

Grover’s algorithm and exponential for the QFT) and are well understood and described

in the literature [NC10]. Previous work tackled entanglement in Grover’s algorithm and

the QFT from two perspectives: quantitatively, with the Geometric Measure of Entangle-

ment (GME) [Shi95, BNO02, WG03], separately for Grover’s algorithm [RBM13] and the

QFT [SSB05], and qualitatively, by observing the different entanglement SLOCC classes

traversed by an execution, for both algorithms [JH19].

Instead of directly measuring entanglement we use Mermin polynomials [Mer90,

ACG+16, AL16] defined in Sec. 2.4 to demonstrate the non-locality (breaking of an up-

43
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per bound holding for all classical states) of some states generated by these algorithms.

Knowing that a state exhibits non-local properties allows us to conclude that the state is

entangled. In this respect one uses Mermin polynomials as entanglement witnesses as

suggested in [TG05, GT09]. Batle et al. [BOF+16] previously investigated non-local prop-

erties during Grover’s algorithm using Mermin polynomials. However they concluded to

the absence of non-locality. In the present work we setup the Mermin polynomials in such

a way that we exhibit, on the contrary, violation of the classical inequalities in Grover’s al-

gorithm. Moreover our evaluation techniques are more efficient, allowing us to reach 12

qubits. We also exhibit non-locality during the QFT in the context of Shor’s algorithm.

An initial motivation of this study is the verification of quantum programs. Turning a quan-

tum algorithm into an implementation for a quantum computer with scarce resources often

requires highly non-trivial optimizations, which may introduce bugs in the resulting pro-

grams. Checking state properties is a way to gain more confidence in these implemen-

tations. In this chapter we investigate non-locality as a property of entangled quantum

states that could be checked for a quantum algorithm and its implementations. In this

respect evaluation of Mermin polynomials is of particular interest: violation of the clas-

sical bound has a physical meaning and the evaluation of Mermin polynomials can be

implemented on a quantum computer, as it was demonstrated by Alsina et al. [AL16].

In this chapter we make two different uses of Mermin polynomials. In our study of Grover’s

algorithm we build for each number of qubits a specific Mermin polynomial which achieves

maximal violation for the quantum state of highest GME that Grover’s algorithm is meant

to approach during its execution. Doing so we will not only show that the states gen-

erated by the algorithm violate the classical bound but also that the valuations of this

specific Mermin polynomial behave similarly to the GME. In our study of the QFT, we pro-

pose a different approach by choosing at each step of the algorithm a Mermin polynomial

whose valuation is maximal for the given state. We show that this quantity is a local uni-

tary invariant that can be compared to other invariants. In the context of Shor’s algorithm

for four qubits, we also obtain violation of the Bell-like Mermin inequalities (also called

MABK in the literature) during the QFT part of the algorithm. This amount of violation is

not constant during the QFT, which shows a qualitative change of the nature of entan-

glement involved. This differs from the quantitative results obtained with the Groverian’s

measure of entanglement [SSB05] for which it was proved that the amount of entangle-

ment is nearly constant in Shor’s algorithm during the QFT. Without being contradictory

the present work illustrates the fact that non-equivalent classes of entanglement under

local unitary transformations are achieved during the QFT part of Shor’s algorithm, as it

was shown in [JH19].

The chapter is organized as follows. After Section 4.2 presenting some background on

Grover’s algorithm, the QFT and Mermin polynomials, Section 4.3 presents our method
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and results concerning the detection of entanglement in Grover’s algorithm and the QFT.

In particular we exhibit Mermin inequalities violations in both algorithms. In this section we

also compare the results obtained with the Mermin polynomials to previous results [JH19]

using the Cayley hyperdeterminant. Finally, Section 4.4 documents the code developed

for this evaluation, in order to make it reusable by anyone wishing to1. In order to ease

the reading of this chapter, we have gathered the more technical parts in the appendix

of this manuscript. Firstly regarding a description of the states in Grover’s algorithm in

Chap. B and secondly the definition of the Cayley hyperdeterminant in Chap. C.

4.2/ BACKGROUND

We recall here some notions. This manuscript relies on pure state formalism: each con-

sidered state is a normalized vector of the Hilbert spaceH = C2⊗C2⊗ · · · ⊗C2, this will be

for us the definition of an Hilbert space. A separable state |φ⟩ is a rank-one tensor, i.e.,

|φ⟩ = |φ1⟩ ⊗ |φ2⟩ ⊗ · · · ⊗ |φk⟩, where |φi⟩ are single-qubit states. A tensor/state |φ⟩ is said to

be of rank r if there are r rank-one tensors |φi⟩ =
∣∣∣φi

1

〉
⊗

∣∣∣φi
2

〉
⊗ · · · ⊗

∣∣∣φi
k

〉
, with i = 1, . . . , r,

such that |φ⟩ =
∑r

i=1 αi |φi⟩ with αi ∈ C, and r is minimal for this property. An entangled

state is a tensor of rank higher than 1.

The remainder of this section provides necessary background to the reader, regarding

Grover’s algorithm (4.2.1), some properties of the states during its execution (4.2.2) and

the Quantum Fourier Transform (4.2.3).

4.2.1/ GROVER’S ALGORITHM

We summarize here Grover’s algorithm, widely described in the literature ([Gro96,

LMP03] and [NC10, chapter 6]).

Grover’s algorithm aims to find objects satisfying a given condition in an unsorted

database of 2n objects, i.e. to solve the following problem.

Given a positive integer n, N = 2n, Ω = {0, . . . ,N − 1} and the characteristic function

f : Ω→ {0, 1} of some subset S of Ω ( f (x) = 1 iff x ∈ S ), find in Ω an element of S only by

applying f to some elements of Ω.

Grover’s algorithm provides a quadratic speedup over its classical counterparts. Indeed,

assuming that each application of f is done in one step, it runs in O(
√

N) instead of O(N).

Figure 4.1 shows this algorithm as a circuit composed of several gates that we now de-

scribe. H⊗n+1 is simply the Hadamard gate on each wire. When applied on the first n

1The source code is available at https://quantcert.github.io/Mermin-eval .

https://quantcert.github.io/Mermin-eval
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|0⟩ /n

H⊗n+1 U f
D · · ·

U f
D

|1⟩ · · ·

Figure 4.1: Grover’s algorithm in circuit formalism

registers initialized at |0⟩, it computes the superposition of all states, i.e.,

H⊗n |0⟩ =
1
√

N

N−1∑
x=0

|x⟩ .

After H⊗n+1, the dashed box (hereafter called L) is repeated kopt =

⌊
π
4

√
N
|S |

⌋
times.

The circuit L is composed of the oracle U f and the diffusion operator D. The gate U f

computes the classical function f . It has the following effect on states:

∀(x, y) ∈ {0, . . . ,N} × {0, 1}, U f (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩ .

On the circuit of Figure 4.1 one can show that the last register remains unchanged when

applying the U f gate. Indeed after the Hadamard gate H, this last register becomes

H |1⟩ =
|0⟩ − |1⟩
√

2
. Now consider a state |x⟩ ⊗

|0⟩ − |1⟩
√

2
. Then

U f

(
|x⟩ ⊗

|0⟩ − |1⟩
√

2

)
=


|x⟩ ⊗

|1⟩ − |0⟩
√

2
if f (x) = 1

|x⟩ ⊗
|0⟩ − |1⟩
√

2
otherwise.

In other words,

U f

(
|x⟩ ⊗

|0⟩ − |1⟩
√

2

)
= (−1) f (x)

(
|x⟩ ⊗

|0⟩ − |1⟩
√

2

)
.

One says that the oracle U f marks the solutions of the problem by changing their phase

to −1. To emphasize this, we adopt the usual convention which consists of ignoring the

last register and considering that U f has the following effect:

U f |x⟩ = − |x⟩ ,∀x ∈ S

U f |x⟩ = |x⟩ ,∀x < S
.

The diffusion operatorD = 2(|+⟩ ⟨+|)⊗n−I2n performs the inversion about the mean. Indeed

if |φ⟩ =
∑N−1

i=0 αi |i⟩ and ᾱ = 1
N

∑N−1
i=0 αi denotes the mean value of the amplitudes of |φ⟩, then

D |φ⟩ =
∑N−1

i=0 α′i |i⟩ with α′i − ᾱ = ᾱ − αi.
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x0

(a)

x0

(b)

x0

(c)

x0

(d)

Figure 4.2: First iteration of loop L in Grover’s algorithm

Figure 4.2 provides a visualization of the effect of the beginning of the algorithm on the

amplitudes of |φ⟩. For readability purposes, only 4 amplitudes are represented, and only

one element is searched (S = {x0}), shown with a square instead of a bullet. The combs

represent the amplitude of each element. The state is initialized to |0⟩. The state resulting

of applying H⊗n is the superposition of all states |+⟩⊗n (Figure 4.2a). Then the oracle

U f flips the searched element (Figure 4.2b), and the diffusion operator D performs the

inversion about the mean (Figures 4.2c and 4.2d).

The final measure yields the index of an element from S with high probability.

4.2.2/ PROPERTIES OF STATES IN GROVER’S ALGORITHM

The evolution of the amplitudes of the state |φ⟩ during the execution of the algorithm is

well known [NC10]. If we denote by θ the real number such that sin(θ/2) =
√
|S |/N, then

after k iterations (i.e., after applying k times the circuit L), the state is:
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|φk⟩ = αk

∑
x∈S
|x⟩ + βk

∑
x<S
|x⟩ (4.1)

with αk =
1
√
|S |

sin
(
2k + 1

2
θ

)
and βk =

1
√

N − |S |
cos

(
2k + 1

2
θ

)
. The sequences (αk)k and (βk)k

are two real sequences respectively increasing and decreasing when k varies between 0

and kopt =

⌊
π
4

√
N
|S |

⌋
.

An alternative representation of the evolution of the states during the execution of Grover’s

algorithm is proposed in [HJN16]. An elementary algebra calculation (See Appendix B,

Proposition 4) shows that

|φk⟩ = α̃k

∑
x∈S
|x⟩ + β̃k |+⟩

⊗n (4.2)

with α̃k = αk − βk and β̃k = 2n/2βk. The sequences (α̃k) and (β̃k) are respectively increasing

and decreasing on {0, . . . , kopt} (see Appendix B, Proposition 5).

In particular, if one considers the case of one searched element |x0⟩, i.e. S = {x0}, then

Equation (4.2) becomes

|φk⟩ = α̃k |x0⟩ + β̃k |+⟩
⊗n . (4.3)

|+⟩⊗n

|x0⟩∣∣∣φ⌊kopt/2⌋
〉 X

Figure 4.3: States in Grover’s algorithm and the separable states [HJN16, Figure 2]

Figure 4.3 provides a graphical interpretation of Equation (4.3). The “curve” X represents

the variety (set defined by algebraic equations) of separable states. This figure illustrates

the fact that during the execution of Grover’s algorithm, the quantum state |φk⟩ evolves as

follows: it starts from the separable state |+⟩⊗n and moves on the dotted secant line until

it gets close to the searched state |x0⟩ when k = kopt. All states on the secant line are

entangled (rank-two tensors).

In [HJN16], it is proven that for states in superposition α |x0⟩ + β |+⟩
⊗n with α, β ∈ R+,

the GME is maximal when α = β. Let |φent⟩ hereafter denote the state (|x0⟩ + |+⟩
⊗n)/K,

normalized with the factor K. Figure 4.3 suggests that the search should come close to

the state |φent⟩, around the step kopt/2. Thus, a maximum of entanglement is expected

close to this pivot step.
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4.2.3/ QUANTUM FOURIER TRANSFORM (QFT)

The quantum analogous of the Discrete Fourier Transform (DFT) is the Quantum Fourier

Transform (QFT). It acts linearly on quantum registers and is a key step in Shor’s algo-

rithm, permitting to reveal the period of the function defining the factorization problem

[Sho94, NC10].

In the context of Shor’s algorithm, the QFT is used to transform a periodic state into

another one to obtain its period. The periodic state
∣∣∣φl,r

〉
of n qubits with shift l and period

r is defined by

∣∣∣φl,r
〉
=

1
√

A

A−1∑
i=0

|l + ir⟩ with A =
⌈

N − l
r

⌉
and N = 2n,

for 0 ≤ l ≤ N − 1 and 1 ≤ r ≤ N − l − 1 [SSB05, Eq. 5].

For example, for the periodic 4-qubit states, with shift l = 1 and period r = 5, there are

A =
⌈

16−1
5

⌉
= 3 basis elements, so:

∣∣∣φ1,5
〉
=

1
√

3

(
|1⟩ + |6⟩ + |11⟩

)
=

1
√

3

(
|0001⟩ + |0110⟩ + |1011⟩

)
.

When applied to one of the computational basis states |k⟩ ∈ {|0⟩ , |1⟩ , . . . , |N − 1⟩} (ex-

pressed here in decimal notation), the result of the QFT can be expressed by

QFT |k⟩ =
1
√

N

N−1∑
j=0

ωk j | j⟩ ,

where ω = e
2iπ
N is the primitive N-th root of unity. Then, for any n-qubit state |ψ⟩ =∑N−1

j=0 x j | j⟩, we get

QFT |ψ⟩ =
N−1∑
k=0

yk |k⟩ with yk =
1
√

N

N−1∑
j=0

x j · ω
k j. (4.4)

The corresponding matrix is

QFTN =
1
√

N



1 1 1 1 · · · 1

1 ω1 ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


.
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In the circuit representation, the QFT can be decomposed into several one-qubit or two-

qubit operators. To obtain this decomposition three different kinds of gates are used: the

Hadamard gate, the SWAP gate and the controlled-Rk gates, defined by the matrices and

circuits

S WAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


|x⟩ • • |y⟩

|y⟩ • |x⟩

and

cRk =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e
2iπ
2k


|x⟩ Rk

|y⟩ •

The complete circuit of the QFT is provided in Figure 4.4, where the n-qubit SWAP oper-

ation consists of swapping |x1⟩ with |xn⟩, |x2⟩ with |xn−1⟩, and so on.

|x1⟩ H R2 R3
. . .

Rn

S WAP

|x2⟩ • H R2
. . .

Rn−1

|x3⟩ • •
. . .

...
...

...
...

...
. . . ...

|xn⟩ • •
. . .

H

Figure 4.4: Circuit representation of the Quantum Fourier Transform for a n-qubit register

Remark 1: One of the reasons that explain the exponential speed-up in Shor’s quantum

algorithm, is the complexity of the QFT which is quadratic with respect to the number

of registers. By comparison, classically, the complexity of the Fast Fourier Transform

algorithm that computes the DFT of a vector with 2n entries is in O(n2n).

4.3/ METHOD AND RESULTS

In this section we present the main results of this study, obtained by evaluating Mermin

polynomials on states generated at different steps of Grover’s algorithm and the QFT. As

explained in the introduction (see Sec. 4.1) our goal is to exhibit quantum properties of

those states that can be experimentally checked. When it violates the classical bound,

a Mermin polynomial detects entanglement – a resource that has been proved several
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times to appear in those algorithms. We obtain those violations in both algorithms. It

is also known that the amount of violation of Mermin’s inequalities is not in one-to-one

correspondence with the quantity of entanglement involved [BGS05]. The question of

measuring the quantity of entanglement is also a difficult question, as it is known that the

notion of absolutely maximally entangled states does not exist already in the four-qubit

case [HS00]. Here we compare evaluation of Mermin polynomials to different types of

entanglement measures. In Grover’s algorithm one uses a specific Mermin polynomial,

which is fixed once for all the algorithm. By carefully choosing this polynomial one shows

that its evaluation behaves like the GME. In the QFT algorithm, previous work [SSB05]

concluded to small variations of the GME. Here, by choosing differently which Mermin

polynomial we evaluate at each state, we show that the entanglement classes change

during the QFT, as it was already observed in [JH19].

Once two families (a j)1≤ j≤n and (a′j)1≤ j≤n of observables are chosen, one can define the

Mermin test function fMn by fMn(φ) = ⟨φ|Mn|φ⟩. Inequalities (2.2) tell that fMn(φ) > 1 implies

that |φ⟩ is non-local. We present in this section two approaches to choose the parameters

(a j)1≤ j≤n and (a′j)1≤ j≤n of Mn to satisfy the previous inequality for some states generated

by the quantum algorithm of choice.

The first approach evaluates each state that the algorithm goes through with the same

function fMn , with a unique polynomial Mn chosen prior to state computation. This ap-

proach has the advantage of providing a fast calculation ((a j)1≤ j≤n and (a′j)1≤ j≤n are com-

puted only once), but the function fMn is not a measure of entanglement, since it is not

invariant by local unitary transformations, i.e., we do not have fMn(φ) = fMn(g.φ) for all

transformations g ∈ LU = U2(C)n and all quantum states |φ⟩ (|g.φ⟩ is defined as such: for

g = (g1, . . . , gn) and G = g1 ⊗ . . . ⊗ gn, |g.φ⟩ = G |φ⟩).

The second approach is to choose a different Mn for each state |φ⟩, by optimizing fMn(φ)

for each state traversed by the algorithm. This means that we are finding values for (a j)

and (a′j) many times for a single run. This approach was for example used in [BOF+16].

We use it in Section 4.3.2.1 to define a quantity µ(φ), invariant under the group LU of local

unitary transformations (see Proposition 1).

4.3.1/ GROVER’S ALGORITHM PROPERTIES

Hereafter we simplify the calculations by taking S = {x0}, i.e., by considering that Grover’s

algorithm is only searching for a single element x0. We want to show two properties:

1. Grover’s algorithm exhibits non-locality.

2. Parameters of the Mermin test function can be computed so that the function values

increase and then decrease for the successive states |φk⟩ in Grover’s algorithm. The



52 CHAPTER 4. ENTANGLEMENT IN GROVER’S ALGORITHM AND THE QFT

maximum is reached at an integer kmax in {⌊kopt/2⌋, ⌈kopt/2⌉}.

Property 1 is in contradiction with [BOF+16], a detailed explanation is given in Remark 2.

Property 2 makes the chosen Mermin test function behave like the Geometric Measure

of Entanglement.

Next section details the method we followed for finding a good Mermin polynomial estab-

lishing these properties.

4.3.1.1/ METHOD

The definition of Mermin polynomials provides degrees of freedom in the choice of (a j) j≥1

and (a′j) j≥1 (an infinite number of parameters). We reduce that choice by imposing that the

two sequences (a j) j≥1 and (a′j) j≥1 are constant, i.e. ∀ j, a j = a and a′j = a′. This restriction

strongly reduces calculations, and it will be sufficient to achieve our objectives.

Let us denote by a and a′ the two one-qubit observables that will be used to write our

Mermin polynomial. We have a = αX+βY+γZ and a′ = α′X+β′Y+γ′Z with the constraints

|α|2 + |β|2 + |γ|2 = 1 and |α′|2 + |β′|2 + |γ′|2 = 1.

The degrees of freedom are the 6 complex numbers α, β, δ, α′, β′ and δ′ with the two

normalization constraints. Let A = (α, β, δ, α′, β′, δ′) be the six-tuple of these variables.

In order to satisfy Property 2, we search for a six-tuple of parameters A such that

fMn reaches its maximum for the state φkopt/2. We also would like this choice of A to

be independent of the states generated by the algorithm. According to the geomet-

ric interpretation presented in Section 4.2.2, the state φkopt/2 should tend to the state

|φent⟩ =
1
K (|x0⟩+ |+⟩

⊗n) when n tends to infinity (the approximation improves as n increases).

Moreover the state |φent⟩ is a tensor of rank two with an overlap ⟨x0|+⟩
⊗n = 1/

√
2n between

the states |x0⟩ and |+⟩⊗n which tends to 0 as n increases, i.e., we expect the state |φent⟩ to

behave like a GHZ-like state when n is large (by definition the GHZ state is SLOCC equiv-

alent to any non-biseparable rank-two tensor). This point is important because GHZ-like

states are the ones that maximize the violation of classical inequalities by Mermin poly-

nomials [Mer90, CGP+02, ACG+16]. Therefore by choosing a tuple of parameters A

maximizing fMn(φent) we expect to satisfy Properties 1. and 2..

We use a random walk in R6 to maximize fMn(φent). We operate the walk for a fixed number

of steps, starting from an arbitrary point. At each step, we choose a random direction,

and move toward it to a new point. If the value of fMn(φent) at that new point is higher than

at the previous one, then that point is the start point for the next step, otherwise a new

point is chosen.

Once the proper coefficient for Mn found, we compute the values of each fMn(φk) for k in
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{0, . . . , kopt} to validate Properties 1. and 2..

Example 2: When searching the state |0000⟩, the highest value of fM4(φent) obtained by

this random walk is for A = (−0.7,−0.3,−0.7,−0.5, 0.7,−0.5). Then, A is used to compute

M4, and then fM4(φk),∀k ∈ {0, . . . , kopt}.

Remark 2: Some comments are in order at this point to compare our approach with the

work of [BOF+16]. First in [BOF+16] all calculations are done using the density matri-

ces formalism instead of the vector/tensor approach we use here. But this difference

is meaningless, because we are only considering pure states, so, every computation in

the density matrix formalism can be done equivalently within the vector state formalism.

Moreover in [BOF+16] the optimization is done at each step of the algorithm with respect

to the state computed by the algorithm, while we compute the parameters only once

with respect to a targeted state |φent⟩. Finally, as mentioned at the beginning of Sec-

tion 4.3.1.1, we also restrict ourselves to two operators a and a′ and thus all optimizations

are performed on six parameters instead of 6n. This allows us to perform the calculation

for a larger number of qubits (up to 12).

4.3.1.2/ RESULTS

Thanks to our implementation of this method in SageMath, described in Section 4.4, we

obtain the values depicted in Figure 4.5, for n from 4 up to 12 qubits. The searched ele-

ment x0 is always the first element |0⟩ of the canonical basis, but other searched elements

would give similar results, by symmetry of the problem.
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Figure 4.5: Mermin evaluation during Grover’s algorithm for 4 ≤ n ≤ 12 qubits

The lower bound for the number n of qubits is set to 4 because for n ≤ 3 the algorithm has

no time to show any advantage, is not very reliable and doesn’t exhibit non-locality. The

upper bound is set to 12 because of technological limitations: computations for 13 qubits

or more become too expensive.

We see that the two expected properties hold for all values of n: the classical limit is
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violated and the Mermin evaluation increases up to the middle of the executions, and

then decreases (the maximal values are given in Figure 4.6).

n 4 5 6 7 8 9 10 11 12
⌊kopt/2⌋ 1 1 2 3 5 8 12 17 24
kmax 1 2 3 4 6 9 12 18 25
fMn(φkmax) 1.21 1.72 2.05 2.69 3.37 4.17 4.83 6.36 7.71

Figure 4.6: Maximums of fMn(φk) for 4 ≤ n ≤ 12 qubits

Remark 3: In [BOF+16] similar curves (Figure 3) were obtained for n ∈ {2, 4, 6, 8} qubits

showing the increasing-decreasing behavior, but the violation of Mermin’s inequalities –

the non-locality – was not established for n = 6 and n = 8, whereas it is obtained in our

calculation. Recall from Remark 2 that the calculation of [BOF+16] is not exactly the same

as the one performed in this chapter. The curves of [BOF+16] are obtained by maximizing

fMn(φk) at each step of the algorithm with a larger number of parameters. Therefore as

we obtain violation of Mermin’s inequalities via a restricted calculation, the authors of

[BOF+16] should also have observed it. We suspect errors in the implementation of the

calculation of Equations (19) of [BOF+16] as we have redone this calculation for n = 6

based on Equations (18) and (20) of [BOF+16], and we have obtained the violation of

Mermin’s inequalities shown in Figure 4.7.
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Figure 4.7: Mermin evaluation during Grover’s algorithm for 6 qubits using [BOF+16]
method

Remark 4: The curve for n = 12 in Figure 4.5 should be compared to the curve of Figure 1

of [RBM13] where the evolution of the GME of the states generated by Grover’s algorithm

is given for n = 12 qubits. In our setting it is not a surprise that both curves are similar

because in all of our calculations the function fMn is defined by the set of parameters

that maximizes its value for |φent⟩. Similar behavior for other invariants in the context of

Grover’s algorithm have also been observed in [MW02a, CBAK13, HJN16].

Figure 4.8 provides another argument explaining why we expected violation of Mermin’s

inequalities in Grover’s algorithm when n increases. The curve with points as dots cor-

responds to the evaluation of fMn(φent) and the curve with points as crosses corresponds
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to the theoretical upper bound for the violation of the Mermin inequality defined by Mn. It

can be deduced from the geometric description of the algorithm (Section 4.2.2) that the

quantum state
∣∣∣φ⌈kopt/2⌉

〉
should be close to |φent⟩ and thus behave like it with respect to the

Mermin polynomial. Despite the fact that fMn(φent) does not reach the theoretical upper

bound that is obtained for states LOCC equivalent to |GHZn⟩, one sees that the difference

between fMn(φent) and the classical bound 1 increases as a function of n.
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Figure 4.8: Numerical results compared to theoretical boundary of the Mermin evaluation

4.3.2/ QUANTUM FOURIER TRANSFORM

To exhibit non-local behavior of states generated at each step of the Quantum Fourier

Transform we restrict ourselves to periodic four-qubit states for the following reasons:

1. as explained in Section 4.2.3, the QFT in Shor’s algorithm is applied to periodic

states [NC10];

2. as we will see in Section 4.3.2.2 the four-qubit case is sufficient to obtain violation

of Mermin’s inequalities;

3. we want to compare the present approach with a recent study of entanglement

in Shor’s algorithm in the four-qubit case, proposed by H. Jaffali and F. Holweck

[JH19].

4.3.2.1/ METHOD

When we apply the QFT to periodic states we have no a priori geometric information

about the type of states that will be generated. In fact it depends on two initial parameters

that define the periodic state
∣∣∣φl,r

〉
: its shift l and its period r. Therefore there are no

reasons for restricting the choice of parameters in the calculation of fMn(φl,r). For the

four-qubit case this implies that our optimization will be carried over the 24 parameters

defining M4, hereafter denoted α1, . . . , α24 (such that a1 = α1X + α2Y + α3Z, . . . , a4 =
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α10X +α11Y +α12Z, a′1 = α13X +α14Y +α15Z, . . . , and a′4 = α22X +α23Y +α24Z), and this, for

each state generated, in opposition to Section 4.3.1.

For k ≥ 0, let
∣∣∣φl,r

k

〉
denote the state reached after the first k gates in the QFT (Figure 4.9)

initialized with the periodic state
∣∣∣φl,r

〉
with shift l and period r (this means that

∣∣∣φl,r
0

〉
=∣∣∣φl,r

〉
).

H R2 R3 R4

SWAP
• H R2 R3

• • H R2

• • • H

∣∣∣ϕl,r
0

〉∣∣∣ϕl,r
1

〉 ∣∣∣ϕl,r
2

〉 ∣∣∣ϕl,r
3

〉 ∣∣∣ϕl,r
4

〉∣∣∣ϕl,r
5

〉∣∣∣ϕl,r
6

〉 ∣∣∣ϕl,r
7

〉∣∣∣ϕl,r
8

〉∣∣∣ϕl,r
9

〉∣∣∣ϕl,r
10

〉 ∣∣∣ϕl,r
11

〉

Figure 4.9: Circuit representation of the QFT for 4 qubits with its numbered states

We are interested by the evolution of the function q defined for k ≥ 0 by

q(k) = max
α1,...,α24

fM4

(
φl,r

k

)
. (4.5)

In [JH19] two of the authors of the paper corresponding to this chapter have studied the

evolution of entanglement for periodic four-qubit states through QFT by computing the

absolute value of an algebraic invariant called the Cayley hyperdeterminant and denoted

by ∆2222. This polynomial of degree 24 in 16 variables is a well-known invariant in quantum

information theory and its absolute value is known to be a measure of entanglement

[MW02b, LT03, OS06, GW14]. We provide the definition of ∆2222 in Appendix C.

Surprisingly, the two approaches, which are of different natures – an algebraic definition

for the hyperdeterminant and an operator-based construction for Mermin evaluation –

would sometimes present similar behavior (see Figure 4.10).
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Figure 4.10: Evaluation of entanglement during the QFT of
∣∣∣φ9,1

〉
using the hyperdetermi-

nant and Mermin evaluation
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In [JH19] it was observed that the evolution of entanglement for four-qubit periodic states

through QFT shows three different behaviors with respect to ∆2222.

• Case 1. The polynomial ∆2222 is nonzero when evaluated on
∣∣∣φl,r

〉
and does not

vanish during the transformation. In terms of four-qubit classification [VDDMV02] it

means that the transformed states remain in the so-called Gabcd class. This happens

for (l, r) ∈ {(1, 3), (2, 3)}.

• Case 2. The polynomial ∆2222 is zero for the periodic state
∣∣∣φl,r

〉
and is nonzero dur-

ing the QFT. This happens for (l, r) ∈ {(0, 3), (0, 5), (2, 1), (3, 1), (3, 3), (4, 1), (4, 3), (5, 1),

(5, 3), (6, 1), (6, 3), (7, 1), (9, 1), (10, 1), (11, 1), (12, 1)}.

• Case 3. The polynomial ∆2222 is zero for the periodic state
∣∣∣φl,r

〉
and it remains equal

to zero all along the QFT for all the other (l, r) configurations (with 0 ≤ l ≤ N − 1 and

1 ≤ r ≤ N − l − 1).

Before presenting the results let us point out that now the calculated quantity is invariant

under local unitary transformations, i.e. under the group LU = U2(C)n.

Proposition 1: Let |φ⟩ ∈ (C2)⊗n be a n-qubit state. We recall that the Mermin polynomial

Mn is a function of families of observables, as defined in Definition 2. With this, we define

the function µ as

µ(φ) = max
a,a′
⟨φ|Mn(a, a′)|φ⟩ . (4.6)

Then µ(φ) is LU-invariant.

Proof. First one recalls that a one-qubit observable A such that S p(A) = {−1, 1} can always

be written as A = αX+βY+γZ with α, β, γ ∈ R and α2+β2+γ2 = 1. For the action g.A = g†Ag

on A by conjugation with a unitary matrix g ∈ U2(C), one has g.A = Ã = α̃X + β̃Y + γ̃Z with

α̃, β̃, γ̃ reals such that α̃2 + β̃2 + γ̃2 = 1. Indeed Ã is also a one-qubit observable such that

S p(Ã) = {−1, 1}.

Let us denote by λ = (α1, β1, γ1, α
′
1, β
′
1, γ
′
1, . . . , αn, βn, γn, α

′
n, β
′
n, γ
′
n) ∈ R6n a tuple of 6n real

parameters such that α2
i +β

2
i +γ

2
i = 1 and α′2i +β

′2
i +γ

′2
i = 1 that define a Mermin polynomial

Mn(λ). Then

µ(φ) = max
λ
⟨φ|Mn(λ)|φ⟩

exists, because λ → ⟨φ|Mn(λ)|φ⟩ is a continuous function on a dense compact interval.

Let us denote by λ′ a tuple of parameters that maximizes ⟨φ|Mn(λ)|φ⟩, i.e.,

µ(φ) = ⟨φ|Mn(λ′)|φ⟩ .

Let |ψ⟩ be a n-qubit state LU-equivalent to |φ⟩. Thus there exists g = (g1, . . . , gn) ∈ LU such

that |ψ⟩ = |g.φ⟩ = G |φ⟩ with G = g1⊗. . .⊗gn. Then ⟨φ|Mn(λ′)|φ⟩ =
(
⟨φ|G†

)
GMn(λ′)G†

(
G |φ⟩

)
=

⟨ψ|Mn(λ′′)|ψ⟩ for some tuple of parameters λ′′. To prove this, we first observe that Mn(λ)

is a sum of tensor products of normed linear sums of Pauli matrices. Since G ∈ LU,

GMn(λ′)G† is a tensor product of one qubit observables with a specter of {−1, 1}, which
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means that each of these observables can be expressed as a normed linear sum of Pauli

matrices which which gives us λ′′ such that GMn(λ′)G† = Mn(λ′′). Therefore

µ(φ) ≤ µ(ψ).

But |φ⟩ = G† |ψ⟩ also holds, so a similar reasoning provides the inequality µ(φ) ≥ µ(ψ) and

thus the equality.

In the next section we plot and analyze different curves of the approximation q̃ of q in the

four-qubit case for different choices of (l, r).

4.3.2.2/ RESULTS

In order to compute the values of the function q defined by (4.5), we find an approximation

noted q̃ by optimizing the parameters α1, . . . , α24 defining Mn. Curves of q̃(k) are shown

on Figures 4.11, 4.12 and 4.13, for k ∈ {0, . . . , 11} and for different choices of shift l and

period r, respectively in Cases 1, 2 and 3.
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(a) (l, r) = (1, 3)
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(b) (l, r) = (2, 3)

Figure 4.11: Mermin evaluation of states during the QFT of two states
∣∣∣φ(l,r)

〉
from Case 1

of [JH19]

Let us start with general comments.

• All examples in Figures 4.11, 4.12 and 4.13 present violations of the Mermin in-

equality, and the amount of violation evolves during the algorithm. This contrasts

with [SSB05] where the authors found almost no evolution of the GME during the

QFT. Those statements are not contradictory as entanglement and non-locality are

not the same resource but it shows that the Mermin polynomials detect variations

of the nature of the states that are not measured by the GME.

• The sets {0, 1}, {4, 5}, {7, 8} and {9, 10, 11} for k correspond to states before and after

gates of the QFT that do not modify entanglement (Hadamard, SWAP). That ex-

plains why the function is constant on those intervals, as it was already the case for

the curves k 7→ |∆2222(φl,r
k )| in [JH19].

• States corresponding to Cases 1 and 2 of [JH19] violate the classical bound during
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(a) (l, r) = (0, 3)

0 2 4 6 8 10 12
1

1.5
2

2.5
3

1

k

q̃(
k)

(b) (l, r) = (5, 3)
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(c) (l, r) = (11, 1)
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Figure 4.12: Mermin evaluation of states during the QFT of four states
∣∣∣φ(l,r)

〉
from Case

2 of [JH19]
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(b) (l, r) = (0, 11)
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(c) (l, r) = (0, 15)
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Figure 4.13: Mermin evaluation of states during the QFT of four states
∣∣∣φ(l,r)

〉
from Case

3 of [JH19]

the execution of the QFT. Only some states corresponding to Case 3 produce con-

stant curves with some of them equal to the classical bound (not drawn). It is for

instance the case for (l, r) = (2, 4) which is a separable state that remains separa-
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ble during the algorithm. Figure 4.13 illustrates different possible behaviors of the

states in Case 3. These variations were not detected in [JH19] by the evaluation of

|∆2222|.

The amount of violation of non-locality measured during the QFT is not connected to

the change of SLOCC classes computed in [JH19] for the same algorithm and input

state. Indeed, states in the same SLOCC class reach different values of the maximal

violation of the Mermin inequality. For instance, if one considers the periodic states
∣∣∣φl,r

〉
for (l, r) = (2, 2) and (l, r) = (0, 11) (Figures 4.13a and 4.13b), it is shown in [JH19] that

these two states are SLOCC equivalent (i.e. can be inter-converted by a reversible local

operation), but their evolution during the QFT is quite different. The value of q̃(k) fluctuates

around 1.10 for (l, r) = (2, 2), whereas it is in the interval [1.65, 2.18] for (l, r) = (0, 11).

Similarly the cases (l, r) = (0, 15) and (1, 1) (Figures 4.13c and 4.13d) correspond to

two states SLOCC equivalent to |GHZ4⟩ at the beginning of the algorithm. It is clear

for (l, r) = (0, 15) because
∣∣∣φ0,15

〉
= |GHZ4⟩ and q̃(k) reaches the maximal possible value at

the beginning of the algorithm. The maximal violation of Mermin inequality for four qubits

is 2
√

2 ≈ 2.81 (2
n−1

2 for n = 4), but this value is nowhere to be approached for (l, r) = (1, 1)

where the value of q̃(k) is close to 1 at all steps of the run. In fact the state

∣∣∣φ1,1
〉
=

√
16
15
|++++⟩ −

1
√

15
|0000⟩ (4.7)

is a state on the secant line joining |++++⟩ and |0000⟩, as described in Section 4.2.2. This

state is indeed SLOCC equivalent to |GHZ4⟩ but it is closer to a separable state if one

considers the GME.

4.4/ IMPLEMENTATION

This section explains the code developed for this chapter and relates it to the notations

from Section 4.2. This code can be found at https://quantcert.github.io/Mermin-eval . It

uses the open-source mathematics software system SageMath2 based on Python. The

code is a module named mermin_eval, and usage examples can be found in the GitHub

repository. Note that all the results of this chapter have been double checked, by first

being obtained on Maple3 and then only being generalized on SageMath.

The code is provided and presented for several reasons: so the readers can see how

we obtained the results presented in Section 4.3.1.2, and they can reproduce our com-

putations by running the code. But the code can also be extended to other evaluation

2http://www.sagemath.org
3https://www.maplesoft.com

https://quantcert.github.io/Mermin-eval
http://www.sagemath.org
https://www.maplesoft.com
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methods of Grover’s algorithm, or adapted to other quantum algorithms, since it is struc-

tured in several well-documented functions.

This section is divided in two parts: we first explain the code used for Grover’s algorithm in

Section 4.4.1, and then the code used for the Quantum Fourier Transform in Section 4.4.2.

4.4.1/ GROVER’S ALGORITHM IMPLEMENTATION

For Grover’s algorithm, the main function grover is reproduced in Listing 4.1. The pa-

rameter target_state_vector is the searched state |x0⟩. The function first executes an

implementation grover_run of Grover’s algorithm, detailed in Section 4.4.1.1, and stores

in the list end_loop_states the states after each iteration of the loop L. Then but inde-

pendently, a call to the function grover_optimize (Section 4.4.1.2) optimizes Mermin op-

erator. The result is stored in the matrix M_opt. Finally both these results are used to eval-

uate entanglement after each iteration of L with a call to the function grover_evaluate

(Section 4.4.1.3), also responsible of printing the evaluations at each step.

def grover(target_state_vector):
end_loop_states=grover_run(target_state_vector)

M_opt=grover_optimize(target_state_vector)

grover_evaluate(end_loop_states, M_opt)

Listing 4.1: Main function for Grover’s entanglement study

4.4.1.1/ EXECUTION

The function grover_run given in Listing 4.2 takes as input the target state and returns a

list of states composed of the states at the end of each loop iteration.

def grover_run(target_state_vector):
layers, k_opt=grover_layers_kopt(target_state_vector)
N=len(target_state_vector)
V0=vector([0, 1] + [0]*(2*N-2))

states=run(layers, V0)
end_loop_states=states[0]
for i in range(k_opt):
end_loop_states.append(states[2*i+1])

return end_loop_states

Listing 4.2: Function running Grover’s algorithm
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This function operates in two steps. The first step is to build the circuit for Grover’s al-

gorithm, which is achieved by the function grover_layers_kopt. The circuit format is

described in Sec. 3.1. Then the circuit is executed, which is achieved by the function run

that returns the list of the states after each layer. The function run is also described in

Sec. 3.1.

The for-loop then filters out all the intermediate states which are not at the end of a

loop iteration. For example, if we consider Grover’s algorithm on three qubits shown

in Figure 4.14, we would have the first state |φ0⟩, and the states |φ3⟩ and |φ5⟩ in

end_loop_states.

|0⟩

H⊗n+1 U f
D

U f
D|0⟩

|0⟩

|1⟩
|φ0⟩ |φ1⟩ |φ2⟩ |φ3⟩ |φ4⟩ |φ5⟩

Figure 4.14: End loop counting example

This implementation of the simulation of Grover’s algorithm has its limits though. It is com-

putationally expensive to multiply matrices beyond a certain number of qubits. To push it

a little further, we used another implementation for Grover’s algorithm, less versatile but

more efficient. This method is presented in Listing 4.3. In this case, two important differ-

ences are first that there is no more use for the ancilla qubit (the last wire in the circuit

definition of Grover’s algorithm, see Figure 4.1), which divides by two the number of ele-

ments in a state vector, and second that almost no matrix multiplication is used. Indeed,

the loop is now handled by functions operating directly on the state vector. The first func-

tion is oracle_artificial, and it only flips the correct coefficient in the running state (this

is the behavior explained in Section 4.2.1). The second function diffusion_artificial

performs the inversion about the mean.

4.4.1.2/ OPTIMIZATION

The grover_optimize function shown in Listing 4.4 computes an approximation of an

optimal Mermin operator, as explained in Section 4.3.1.1. The Mermin operator Mn is

an implicit function of (α, β, δ, α′, β′, δ′), here implemented as (a,b,c,m,p,q). Because of

this, optimizing the Mermin operator is finding the optimal (α, β, δ, α′, β′, δ′) for our Mermin

evaluation (which is done using the optimize function).

To optimize the Mermin operator, first the state |φent⟩ = (|x0⟩ + |+⟩
⊗n)/K (with K the nor-

malizing factor) is computed and stored in phi, then fMn represented by M_eval is used

to define fMn(|φent⟩) as M_phi. Note that in the mathematical notations, fMn(|φent⟩) is an
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def grover_run(target_state_vector):
N=len(target_state_vector)
n=log(N)/log(2)
k_opt=round((pi/4)*sqrt(N))
H=matrix(field, [[1, 1],

[1, -1]])/sqrt(2)
hadamard_layer=kronecker_power(H, n)

V0=vector([1]+[0]*(N-1))

V=hadamard_layer * V0
end_loop_states=[V]

for k in range(k_opt):
V=oracle_artificial(target_state_vector, V)
V=diffusion_artificial(V)
end_loop_states.append(V)

return end_loop_states

Listing 4.3: Optimized implementation of Grover’s algorithm

def grover_optimize(target_state):
n=log(len(target_state))/log(2)
plus=vector([1,1])/sqrt(2)
plus_n=kronecker_power(plus, n)
phi=(target_state + plus_n).normalized()

def M_phi(a,b,c,m,p,q):
return M_eval(a,b,c,m,p,q, phi)

(a,b,c,m,p,q),v=optimize(M_phi, (1,1,1,1,1,1), 5, 10**(-2), 10**2)

return M_from_coef(n,a,b,c,m,p,q)

Listing 4.4: Optimization function for Grover’s algorithm

implicit function of (α, β, δ, α′, β′, δ′). This implicit relation is made explicit as M_phi is a

function of (a,b,c,m,p,q).

The optimize function takes as input a function (here M_phi), a first point to start the

optimization from (here (1,1,1,1,1,1)), the step sizes bounds and a maximal number

of iterations on a single step (here 102). The random walk starts with a step size of 5 and

ends with a step size of 10−2.

The optimization function proceeds with a random walk. It iterates until it finds a local

maximum (for all points p in a neighborhood around the point found popt, their evaluation

by the function given as the first parameter is less than the evaluation of the point found

f (p) ≤ f (popt)). To find this optimum, the process starts from an arbitrary point (given as
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an argument) and at each step, an exploration of the space is done around the current

point until the evaluation on the argument function increases. If an increase cannot be

found before the fixed maximal number of iterations, the step size is reduced, otherwise

the same step is repeated with the same step size. The function ends when the step size

reaches the fixed minimal size of the steps.

Remark 5: This optimization can be expensive, so to speed up the calculation, a

memoization step is hidden here: if (a,b,c,m,p,q) has already been computed for

target_state, this result has been stored on disk at this point and is now loaded.

4.4.1.3/ EVALUATION

The function grover_evaluate shown in the Listing 4.5 is the simplest of the three: it

computes fMn(|φk⟩) = ⟨φk|Mn|φk⟩ for each |φk⟩ in the end_loop_states list with Mn here

being M_opt, and prints them.

def grover_evaluate(end_loop_states, M_opt):
for state in end_loop_states:
print((state.transpose().conjugate()*M_opt*state))

Listing 4.5: Evaluation function for Grover’s algorithm

To overview the code as a whole, we can exhibit the link with Figure 4.5. For this fig-

ure, each graph has been obtained by using a code line such as in Listing 4.6 (where

string_to_ket is a function used to convert a string of a specific format into a vector, in

this case the vector |0000⟩). So, for four qubits, we set the target state as |0000⟩, for five

qubits as |00000⟩, and so on. This is enough for symmetry reasons (searching for |1001⟩

instead of |0000⟩ yields similar results).

>>> grover(string_to_ket("0000"))
0.173154027401573
1.01189404012534
-0.469906068136016

Listing 4.6: Mermin evaluation in Grover’s algorithm example

4.4.2/ QUANTUM FOURIER TRANSFORM IMPLEMENTATION

For the QFT, the main function qft is reproduced in Listing 4.7. The parameter state is

the state ran through the QFT, generally a periodic state
∣∣∣φl,r

〉
generated by the function

periodic_state (Listing 4.8). The function qft first calls an implementation qft_run of

the QFT, detailed in Section 4.4.2.1, and stores the computed states in the list states.

Then the states are directly evaluated. The important difference compared to Grover’s

algorithm implementation is the fact that we are not using a separate optimization step,
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the optimization process is included in the evaluation process: each evaluation requires

an optimization. The evaluation process is thus performed by the function qft_evaluate

(Section 4.4.2.2), printing the evaluation as well.

def qft_main(state):
states=qft_run(state)
return qft_evaluate(states)

Listing 4.7: Main function for QFT entanglement study

def periodic_state(l,r,nWires):
N=2**nWires
result=vector(N)
for i in range(ceil((N-l)/r)):
result[l+i*r]=1

return result.normalized()

Listing 4.8: Function used to generate the periodic state
∣∣∣φl,r

〉

4.4.2.1/ EXECUTION

The function qft_run (Listing 4.9) uses the same circuit format as grover_run presented

in Section 4.4.1.1. This circuit is built by qft_layers (Listing 4.10) and run by run. In this

case however, the states do not need to be filtered, resulting in an almost trivial qft_run

function.

def qft_run(state):
layers=qft_layers(state)
states, _=run(layers, state)
return states

Listing 4.9: Function running the QFT

The qft_layers function uses two functions not detailed here. swap returns a matrix cor-

responding to the swap of two wires wire1 and wire2 and the identity on the other wires

concerned. The R method returns the controlled rotation of angle e
2iπ
2k , with the rotation

being performed on the wire target controlled by the wire control. The two matrices

built by these functions have a size of 2**size. With these two functions, qft_layers

builds the circuit for the QFT using R on the whole width of the circuit when a rotation

is needed and using swap only at the end to build the global swap (in fact, swap is also

used in R and that is the reason why this implementation of swap on two wires has been

chosen instead of a more general arbitrary permutation gate).
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def qft_layers(state):
def swap(wire1,wire2,size):
...

def R(k,target,control,size):
...

H=matrix(field, [[1, 1],
[1, -1]])/sqrt(2)

I2=matrix.identity(field, 2)
nWires=log(len(state))/log(2)
layers=[]

for wire in range(nWires):
layers.append([I2]*wire + [H] + [I2]*(nWires-wire-1))
for k in range(2, nWires-(wire-1)):
layers.append([R(k, wire, k+(wire-1), nWires)])

global_swap=matrix.identity(field, 2**nWires)
for wire in range(nWires/2):
global_swap *=swap(wire, nWires-1-wire, nWires)

layers.append([global_swap])

return layers

Listing 4.10: Function building the circuit of the QFT

4.4.2.2/ EVALUATION

In this case again, the evaluation is conceptually simpler than in Grover’s algorithm. In-

deed, since the optimization needs to be performed for each evaluation, the result printed

at each step is simply the optimal point reached by the optimize function (the same as

described in Section 4.4.1.2). In this case, a notable difference in the usage of optimize

is the presence of 3*n*2 coefficients. This is explained by the fact that, this time, we do

not want a trend for the evaluation’s evolution and a "good enough" Mn. This means that

we do not stand satisfied by the constant an = αX+βY+δZ but we have α, β and δ variable

as explained in 4.3.2.1 (where they become (αi)1≤i≤6n).

Because of this, the function M_func (Listing 4.11) we optimize is now calling M_eval_all

instead of M_eval. The difference is that M_eval took only 3×2 coefficients to compute Mn

with fixed ai = αX+βY +δZ and a′i = α
′X+β′Y +δ′Z, whereas this time the coefficients of ai

and a′i are variable, thus M_eval_all takes as arguments two lists of triples _a_coefs and

_a_prime_coefs (each triple encoding one ai or a′i). The function coefficients_packing

reshapes as two lists of triples the flat list of reals that M_func requires as input.
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def qft_evaluate(states):
n=log(len(states[0]))/log(2)
for state in states:
rho=matrix(state).transpose()*matrix(state)

def M_func(_a_a_prime_coefs):
_a_coefs, _a_prime_coefs=coefficients_packing(_a_a_prime_coefs)
return M_eval_all(n, _a_coefs, _a_prime_coefs, rho)

_,value=optimize(M_func, [1]*3*n*2, 5, 10**(-2), 10**2)

print value

Listing 4.11: Evaluation function for the QFT

4.4.3/ IMPLEMENTATION RECAP

Finally, to conclude this section, we recall the functions reusable in a general context, the

run function can be used for general purpose quantum circuit simulation and the Mermin

evaluation process can be used for arbitrary state entanglement evaluation. An issue

previously mentioned was the correctness between the process and the simulation, and

here this issue is tackled by structured and clear code. This structure also helps the code

to be more modular, for instance, if the user wants to change the optimization method for

more speed or precision, it can be easily achieved.

Remark 6: Note that the actual implemented functions have additional parameters that

are ignored here for simplicity’s sake. For example, each function has a verbose mode,

to display more information about its run.

4.5/ CONCLUSION

In this chapter, we have shown that both Grover’s algorithm and the QFT generate states

that violate Mermin’s inequalities. We provided, for different settings, curves measuring

the evolution of the non-local behavior of the states through the algorithms. Evaluation

of Mermin polynomials detects entanglement when it violates the classical bound and

we compared our numerical results on non-locality evolution with the evolution of values

obtained from several measures of entanglement for the same algorithms. Understanding

the connection between entanglement and non-local properties of quantum states is a

difficult question and we did not intend to provide new theoretical perspectives on this

subject. Instead our goal was more to focus on an operational level by studying how

specific properties of quantum states generated by those algorithms behave.

This work is a step towards contributions in quantum program verification, by checking
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state properties, such as entanglement or violation of classical Bell inequality, or temporal

properties, such as the increase or decrease of a quantity related to non-locality, during

the execution of a quantum program. In the present work we check properties during the

execution of the program, for a fixed number of qubits. A promising possibility is to check

properties statically, without executing the program and once for all numbers of qubits.

A theoretical foundation for this static verification is the quantum Hoare logic [Yin11], an

adaptation of the Hoare logic [Hoa69] to quantum programs. Mermin polynomials studied

in this chapter seem promising to check properties during program execution, since Mer-

min evaluation corresponds to an experimental measurement that could be performed on

a quantum computer (see for instance [AL16] for examples of Mermin evaluation on a

5-qubit computer, Chap. 5 presents another such implementation).



5

IMPLEMENTATION AIMED AT

EXECUTION ON A QUANTUM

PROCESSOR

One of the motivations for developing Mermin’s polynomials as a tool for studying entan-

glement is that they have the potential to be executed on an actual quantum computer.

This means that the simulator developed to obtain the results presented in Chap. 3 and

4 can now be replaced by a counterpart running on a quantum computer. In order to do

this, we turn to the IBM quantum experience, and more specifically to the Qiskit library, an

extensive python library offering an interface with either a local simulator, a cloud accessi-

ble simulator, or the quantum processors made accessible through internet by IBM. This

work was done in cooperation with Grâce Amouzou, another PhD student working with

Frédéric Holweck. This work was in fact not published on my side, but Grâce published

some results coming from our common work [ABJ+20].

In this chapter, we first present the Qiskit ecosystem in Sec. 5.1. We then describe how

we compute the Mermin evaluation on Qiskit in Sec. 5.2, and we finally show how we use

it to reproduce our study of entanglement for the QFT in Sec. 5.3.

5.1/ THE QISKIT ECOSYSTEM

The first guided approach to IBM quantum experience is via the composer (available at

https://quantum-computing.ibm.com/composer). It is a visual interface to create quantum

circuits such as the one depicted in Fig. 5.1.

But as mentioned before, the circuitry has important practical limitations. The first tool

to circumvent this limitation is the QASM language, also available on the IBM quantum

experience. But since this language aims at mimicking quantum circuitry, most of the

problems of the latter remain. The next step suggested by IBM’s tutorial is to use Qiskit,
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Figure 5.1: Decomposition of the Toffoli gate using IBM’s composer

with Jupyter suggested as the method of choice to run the Qiskit code, as shown in

Fig. 5.2. But since Qiskit is a Python library, the user has all the power of the python

language to play with. Given this, I implemented the code to run the QFT on IBM’s

quantum computer, and analyze it using Mermin’s polynomials. The corresponding code

is available at https://quantcert.github.io/Mermin-hypergraph-states/Qiskit/.

Figure 5.2: Introduction to Qiskit on Jupyter

5.2/ MERMIN IMPLEMENTATION ON QISKIT

I started by implementing a wrapper for the circuit execution in order to simplify this pro-

cess. A simplified version of this wrapper is shown in listing 5.1 where Aer and IBMQ are

https://quantcert.github.io/Mermin-hypergraph-states/Qiskit/
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classes from the Qiskit library. Aer provides the simulator and IBMQ the access to IBM’s

quantum experience computation nodes (classical simulators and quantum processors).

def runCircuit(qc, simulation=True, local=True, shots=1024):
n=qc.num_qubits
if local:
backend=Aer.get_backend('qasm_simulator')

else:
backend=least_busy(IBMQ.get_provider(group='open').backends(
simulator=simulation,
filters=lambda x: x.configuration().n_qubits > 4))

job_exp=execute(qc, backend=backend, shots=shots)
return job_exp.result()

Listing 5.1: Wrapper around circuit execution

For a given circuit, we compute the Mermin evaluation ⟨φk|Mn|φk⟩ of each of its intermedi-

ate steps using the evaluate_polynomial function presented in listing 5.2. This function

takes as inputs the number of qubits, the circuit to be analyzed (each intermediate step

will be evaluated), and the coefficients used to build the families of observables (ai) and

(a′i) involved in the implementation of the Mermin polynomial, as presented in Sec. 2.4.1.

def evaluate_polynomial(n, circuit, a_a_p_coeffs,
shots=1024, is_simulation=True, local=True):

mermin_polynomial=mermin_IBM(n)
total_result=0
for i in range(2 ** n):

if mermin_polynomial[i] !=0:
measure_monomial=evaluate_monomial(n,i,circuit,a_a_p_coeffs,
shots=shots,is_simulation=is_simulation,local=local)

total_result+=mermin_polynomial[i]*measure_monomial
return abs(total_result)

Listing 5.2: Function computing the Mermin evaluation of a state prepared by a circuit.

This function itself uses the function evaluate_monomial. This is due to the fact that

⟨φ|Mn|φ⟩ cannot be evaluated directly. In order to evaluate it, one has to evaluate each

monomial composing the polynomial Mn.

But before the explanation of the monomials computation, one should understand how

the Mermin polynomial itself is computed, because this is a quite interesting trick. First,

as a reminder, Mn =
∑2n−1

i=0 αia
β1,i
1 ⊗ . . . ⊗ aβn,i

n with αi ∈ {0} ∪ { 1
2k , k ∈ [0..n]} and β is either

the prime mark “ ′ ” or nothing. Furthermore, there is no need to know the ai’s and a′i ’s

for computing the Mermin polynomial at first. Indeed, we first compute the coefficients

αi using the formula defining the Mermin polynomial, given in Eq. 2.1. This is done in

the function mermin_IBM, with the ith entry of the resulting array corresponding to the

monomial aβ1,i
1 ⊗ . . .⊗ aβn,i

n where βk,i is “ ′ ” if the kth digit of i is 1 and “ ” otherwise. Another
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trick used in mermin_IBM but not explicitly shown here is that the coefficients of Mn(a′, a)

are simply the coefficients of Mn(a, a′) in reverse order. This allows us to have a single

recursive function to compute these coefficients, instead of a double recursion.

Now that the coefficients of the monomials are computed, let us recall that the rest of the

information is contained in the coefficients defining the ai’s and a′i ’s. Indeed, as explained

in Chap. 4, each a j is defined as a j = α jX + β jY + γ jZ. Those coefficients are stored in the

variable a_a_p_coeffs as a pair of lists of triples. The first element of the pair contains

the coefficients for the ai’s and the second one the coefficients for the a′i ’s. Each of these

elements is a list of triples, where each element of the list contains the three coefficients

defining the corresponding ai or a′i .

def evaluate_monomial(n, n_measure, circuit, a_a_p_coeffs, shots,
is_simulation=True, local=True):

circuit_size=circuit.num_qubits
circuit_aux=QuantumCircuit(circuit_size,n)
basis_change.U3_gates_placement(n,n_measure,a_a_p_coeffs,circuit_aux)
circuit_mesure=circuit + circuit_aux
result=run.runCircuit(

circuit_mesure,shots=shots,simulation=is_simulation,local=local)
measure_monomial=measures_exploitation(result,shots)
return measure_monomial

Listing 5.3: Function returning the average value of a state prepared by a circuit measured
by a given monomial.

We use this information to compute the monomials as shown in listing 5.3. This function

prepares the total circuit, made of both the circuit preparing the evaluated state and the

evaluation circuit. The evaluation circuit is circuit_aux in the body of the function, and

is prepared using the function U3_gates_placement. Indeed, the an and a′n observables

can be created using the gate U3(θ, ϕ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)
eiϕ sin(θ/2) ei(λ+ϕ) cos(θ/2)

)
. This is because, if we

set θ = arccos(γ) and ϕ = arccos(α/ sin(θ)) then αX + βY + γZ = U3(θ, ϕ,−ϕ − π). Note that in

this formula, β does not appear: this is in fact not so strange since |α|2 + |β|2 + |γ|2 = 1. To

go into more details, the formula must be adjusted on edge cases, the total computation

is shown in listing 5.4.

def mermin_coeffs_to_U3_coeffs(x, y, z):
theta=np.arccos(z)
phi=0 if np.sin(theta)==0 else np.arccos(x/np.sin(theta))
if y/np.sin(theta) < 0:

phi=- phi
return theta, phi

Listing 5.4: Function converting the coefficients of ak to angles to feed to the function
building the corresponding U3 gate.

The measure is performed in the basis associated to the Z Pauli matrix, so an odd number
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of 1s in the result would yield a global measurement of −1 and an even number of 1s would

yield a global measurement of 1. To get the average of the results, one then has to count

positively each result that yielded an even number of 1s and negatively each result that

yielded an odd number of 1s. This operation is performed by the measure_exploitation

function given in listing 5.5.

def measures_exploitation(measures_dictionary, shots):
results=0
for measure in measures_dictionary:

sign=1 if measure.count('1') % 2==0 else -1
results +=sign*measures_dictionary[measure]

return (even_results - odd_results) / shots

Listing 5.5: Function computing the results interpretation for a monomial.

5.3/ QFT ON QISKIT

With this, we have finished our diving into the Mermin evaluation in Qiskit, but we haven’t

seen a concrete example yet. We have created several examples, available in the

example section of the git repository, but I will only present a single one here: the Mermin

evaluation along the QFT. In order to do this, we need to have a circuit building the state at

each step of the QFT, i.e. a truncated QFT circuit. This is precisely the role of the function

build_QFT_0_to_k, presented in listing 5.6. This function simply adds successively each

gate of the QFT, and breaks when the number of gates is equal to the desired number of

gates.

One can easily see the result of the function using the draw method of the Qiskit circuits

as such: build_QFT_0_to_k(4,3).draw() which prints the figure shown in Fig. 5.3.

H
U1 ( /4)

U1 ( /8)

q0

q1

q2

q3

Figure 5.3: Partial QFT containing the first 3 gates of the QFT on 4 wires

At this point, we load the optimized coefficients, generated by the code presented in

Chap. 4, and run the entanglement analysis of the QFT on IBM’s quantum processor by
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def build_QFT_0_to_k(nWires, k):
partial_QFT=QuantumCircuit(nWires)
if partial_QFT.size==k:

return partial_QFT
for wire in range(nWires):

partial_QFT.h(wire)
if partial_QFT.size==k:

return partial_QFT
for inlayer_nb in range(2, nWires-(wire-1)):

theta=np.pi/(2**inlayer_nb)
ctl=wire
target=inlayer_nb+(wire-1)
partial_QFT.cu1(theta, ctl, target)
if partial_QFT.size==k:

return partial_QFT
partial_QFT.barrier()

init_order=nWires
final_order=[nWires-1-wire for wire in range(nWires)]
SWAP=Permutation(init_order, final_order)
result=partial_QFT + SWAP
return result

Listing 5.6: Function creating the truncated QFT circuit containing the first k gates of the
circuit.

calling the main QFT function shown in listing 5.7.

def main(l,r,nWires,optimization_filepath,local=True,simulation=True):
s=periodic_state(l,r,nWires)
preparation_circuit=QuantumCircuit(nWires).initialize(s,range(nWires))
for k in range(QFT_length(nWires)+1):

coeffs=get_coef_from_optimization_file(optimization_filepath,k)
QFT_partial=build_QFT_0_to_k(nWires,k)
value=evaluate_polynomial(nWires,preparation_circuit+QFT_partial,

coeffs,is_simulation=simulation,local=local and simulation)
print(value)

Listing 5.7: Main function computing the Mermin evaluation along each step of the QFT.

Once again, the process presented here is slightly simplified, the complete example is

available on https://quantcert.github.io/Mermin-eval with code documentation, installation

instructions, and many examples.

The only step left is to present the result. The Mermin measurements are represented in

Fig. 5.4 showing both the simulation on Qiskit and the run on IBM’s quantum processors.

This is the disappointing part: to this day, the call of IBMQ, the Qiskit module in charge

of interacting with IBM’s cloud infrastructure, is quite unstable, and network errors are

not rare. This, added to the noise in quantum computation, yield results that are very

https://quantcert.github.io/Mermin-eval
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Figure 5.4: Simulated and actual quantum runs of our implementation of QFT of
∣∣∣φ1,1

〉
on

Qiskit

far from the theoretical ones. A reassuring point though is that the algorithm performs

flawlessly using IBM’s simulator and the function presented in this chapter instead of our

simulator presented in Chap. 4. This leads to believe that both implementations achieve

the desired behavior, and that the strange experimental results are only due to quantum

noise and network errors. This is a good example of how such measures could be useful

to detect the proper implementation of algorithm, or the good behavior of the machine on

which the algorithm runs. At this moment though, with our experimental setup, it is more

expensive to perform the Mermin measure that to run the original algorithm, so this may

be a tool for later use, but for now, it is only a proof of concept.
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This introduction serves to introduce the works presented in this Part. The emphasized

words in this introduction are fully defined in the three chapters of this Part.

The first quantum property we studied, entanglement, showed us possible characteriza-

tions of the studied quantum algorithms. This property often presented to new comers as

a defining property of quantum computing is commonly put in evidence using Bell non-

locality, but those experiences can all be mapped to experiences putting contextuality in

evidence [Cab21]. Knowing this, the study of this new property has a crucial role if we

intend to reason on quantum properties. We approach this property from the point of view

of quantum geometries, a special kind of finite geometries linked to quantum contextuality.

Finite geometries are also mentioned in the literature as block designs. I use this term in

Chap. 6 because this chapter follows previous articles using this terminology, but in the

following chapters, I simply call them geometries.

Chap. 6 presents a method found in the literature to build block designs/finite geometries,

as well as a thorough check of the validity of this method. Chap. 7 and 8 push further

the exploration of finite geometries construction, but this time based on binary symplectic

polar spaces. This work is much more implicated in the study of contextuality, since the

built geometries are immediate candidates for contextual geometries. In Chap. 7, I explain

how I generated contextuality proofs in Magma using the symplectic space, and in Chap.

8 I present a joint work with Metod Saniga, in which we classify certain subgeometries

of the symplectic spaces, when the points of these spaces canonically encode n-qubit

observables, for n = 2, 3, 4.





6

FORMALIZATION AND VALIDATION OF A

BLOCK DESIGN CONSTRUCTION

METHOD

This chapter is the translation of an article written in French for a French conference

[Cd19]. It has been initially written with Jessy Colonval, a master student at this time,

currently working as a Ph.D. student. We thank Michel Planat for his help on the matter.

6.1/ INTRODUCTION

In the domain of experimental mathematics, the researchers often write code to discover

new results. But this is one of the domains where reproducibility could greatly be im-

proved, since, most often, the programs are either not publicly available or are not suffi-

ciently documented or structured to allow the reader to run said program and reproduce

the results. Reproducibility is a major stake that must also be considered in computa-

tional mathematics [SBB+12], in particular to ease the verification and the extension of

published results.

A mathematical theorem is often a general statement that must be proven, since the

calculation allows to validate only a limited fragment of an infinity of cases covered by

this statement. This theorem can be verified by a third party, in a proof assistant, if its

publication is accompanied by a formal demonstration. However, the construction of a

formal proof is a difficult task, since it requires a formalization of all the mathematical

concepts underlying the theorem, and the mastery of a proof assistant. The formal proof

of the odd order theorem [GAA+13] is a good example: it mobilized many researchers

over a long period of time. Comparatively, the test of a large number of instances of a

theorem is often much simpler to implement and can bring a sufficient level of confidence

in the correction of this theorem.
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We propose to apply intensive testing to computational mathematics, as well as other

good programming practices, such as structuring, code factoring, documentation and

free distribution of the source code. In particular, we aim at theorems dealing with infinite

families of mathematical structures with a size. In this case, we propose to verify the

theorem for all structures, by increasing size, up to a maximal size considered as sufficient

to give confidence in the correctness of the theorem.

This work is part of the research on finite geometries called quantum geometries, be-

cause of their link to quantum contextuality. Planat et al. [PGHS15] have shown how to

construct these geometries from groups of permutations, but without publishing a pro-

gram for this construction. These geometries are special cases of block designs (defined

in Sec. 6.2) and the article of Planat et al. presents a method to build them.

A bibliographical search on the origin of this method led us to a previous refer-

ence [KM02], which presents a simpler method, which builds block designs from prim-

itive permutation groups. This article is completed by a program, but the latter does not

contain any code to validate this method. We formalize this method, and then validate it

by enumeration. More precisely, we validate that the block designs built according to this

method have all the characteristics announced in a proposition of this article. We use the

Magma [BCP97] environment, composed of a structured imperative language and a large

library of mathematical functions, in particular for group theory and designs. Our source

code is freely distributed on GitHub1.

Sec. 6.2 presents our implementation of the block design construction method of Key and

Moori [KM02]. Sec. 6.3 deals with our intensive testing of this implementation.

6.2/ BLOCK DESIGNS CONSTRUCTION

Through the following proposition, Key and Moori [KM02] define a method for constructing

block designs:

Excerpt from Prop. 1 on page 3 of [KM02]

Proposition 2: Let G be a finite primitive permutation group acting on the set

Ω of size n. Let α ∈ Ω, and let ∆ , {α} be an orbit of the stabilizer Gα of α. If

B = {∆g : g ∈ G} [. . . ] then B forms a self-dual 1-(n, |∆|, |∆|) design with n blocks

[. . . ].

Sec. 6.2.1 explains this proposition, but the reader unfamiliar with these concepts can

admit its content. Sec. 6.2.2 presents our implementation of the computational content of

this proposition.
1https://quantcert.github.io/Designs

https://quantcert.github.io/Designs
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6.2.1/ DEFINITIONS

Prop. 2 holds for any natural number n and for any group of permutations G on a finite set

Ω of cardinality n, noted here as the set {1, . . . , n}. By nature, this group G is finite. The

application of the permutation g of G to the element α of the set Ω is denoted g • α. The

image of a part ∆ of Ω by the permutation g of G is noted ∆g =def {g • x : x ∈ ∆}. The

following definitions from group theory and block designs theory allow us to understand

the rest of the proposition, where |∆| denotes the cardinality of the orbit ∆.

The group of permutations G on Ω is transitive if, for all elements x and y of Ω, there exists

a permutation g of G such that g • x = y. The group G is primitive if it is transitive and

if it preserves no non-trivial partition of Ω (the trivial partitions of Ω are the partition {Ω},

whose only element is Ω, and the partition {{x} : x ∈ Ω}, composed of all singletons in

Ω). The stabilizer Gα =def {g ∈ G : g • α = α} of an element α of Ω (under the action of

G) is the set of permutations of G which leave α invariant under their action. The orbit

Ox =def {g • x : g ∈ H} of an element x of Ω according to a group H of permutations on Ω

is the set of the images of x by the permutations of H.

A block is a subset of Ω and a block design is a set of blocks. An incidence structure

is a triple D = (P,B,I) where P = {1, . . . , n} is a set of elements, B = {1, . . . , b} indexes

the blocks in a block design on P and I ⊆ P × B is an incidence relation, which defines

the membership of an element to a block. Its dual structure is the incidence structure

Dt =def (B,P,It) where (y, x) ∈ It if and only if (x, y) ∈ I. The incidence relation allows

to associate a block design with an incidence structure, and to define the dual of a block

design. A block design is symmetric if it has as many elements as blocks. It is self-dual if

it is moreover isomorphic to its dual. A t-(v, k, λ) block design has v blocks of cardinality k,

such that each subset of λ blocks has exactly t distinct elements in common.

Prop. 2 states that, for any element α of Ω and for any orbit ∆ of the stabilizer of α under

the action of G different from the orbit {α}, the block design B =def {∆
g : g ∈ G} contains

n blocks and has the regularity of a 1-(n, |∆|, |∆|) self-dual system. The following example

illustrates these definitions from a given group.

Example 3: Let n = 5 and G = {Id, (1, 2, 3, 4, 5), (1, 5, 4, 3, 2), (1, 3, 5, 2, 4), (1, 4, 2, 5, 3),

(2, 5)(3, 4), (1, 2)(3, 5), (1, 5)(2, 4), (1, 3)(4, 5), (1, 4)(2, 3)} a primitive permutation group on

Ω =def {1, 2, 3, 4, 5}. In addition to the identity permutation, noted Id, its permutations

are given as their product of disjoint cycles. The fixed points (the cycles of length 1) are

not explicitly written. With α = 1, the stabilizer of G on α is the group G1 = {Id, (2, 5)(3, 4)}.

The orbits of G1 are the sets {1}, {2, 5} and {3, 4}. For ∆ = {2, 5}, the block design is

B = {{2, 5}, {1, 3}, {1, 4}, {2, 4}, {3, 5}}. It is a 1-(5, 2, 2) block design on 5 elements, composed

of 5 blocks of cardinality k = 2, where each element (t = 1) is present in exactly λ = 2

distinct blocks.
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6.2.2/ IMPLEMENTATION

Magma has functions to build primitive groups [BCP97, PrimitiveGroups], orbits of a

group [BCP97, Orbits], the stabilizer of an element by the action of a group [BCP97,

Stabilizer] and the creation of a block design from an incidence structure [BCP97,

Design], but does not propose an implementation of the method of Key and Moori to build

block designs from a primitive permutation group.

The article [KM02] is completed by Magma code (in its appendix) which does not formal-

ize the computational content of Prop. 2 by a function, but only applies it to two particular

cases of primitive groups of permutations. Thus, this code is not structured. Moreover,

it does not contain any instruction to validate the property of the constructed systems

announced in Prop. 2. Finally, the results returned by this code are mixed with the latter,

without being placed in a comment block. All these points make the code quite uncon-

vincing and not very reusable.

This is why we propose an implementation of Prop. 2 by two functions, reproduced in

the listings 6.1 and 6.2. In order to facilitate their use, they are commented following the

Javadoc formatting (since Magma does not offer a tool allowing to generate a documen-

tation2). Magma variables are named and the functions are structured in such a way that

the code resembles as much as possible to the text of Prop. 2.

The listing 6.1 presents a function that computes the set of orbits ∆ defined in Prop. 2.

It takes as parameter the primitive permutation group G and returns an associative array

Deltas of the orbits ∆ indexed by the corresponding α. For all elements α of the set

Ω = {1, . . . , n}, the loop computes the stabilizer group Galpha in the variable Galpha, and its

orbits in the variable orbits, then associates to index α the sequence of orbits ∆ different

from the singleton {α}. The orbits ∆ are converted into sets thanks to the Magma function

IndexedSetToSet [BCP97] so that the results are in usable form for the creation of some

Magma objects useful for the upcoming functions.

Listing 6.1: Function computing the orbits ∆ from a primitive permutation group.

/**

* Compute orbits of stabilizers of a primitive group [KM02, Proposition 1].

*

* @param G::GrpPerm A primitive group

* @return Deltas::Assoc An associative array indexed by alpha

* and containing the corresponding delta set

*/

AllDelta := function(G)

n := Degree(G);

Omega := {1..n};

Deltas := AssociativeArray();

for alpha in Omega do

Galpha := Stabilizer(G, alpha);

2There is however a GitHub project, "magdoc", aiming at fulfilling this functionality



6.3. VALIDATION 85

orbits := Orbits(Galpha);

Deltas[alpha] := { IndexedSetToSet(Delta) : Delta in orbits | Delta ne { alpha } };

end for;

return Deltas;

end function;

The listing 6.2 presents a function that builds block designs from a primitive group. It

takes as parameter a primitive permutation group G and returns an associative array of

block designs indexed by the associated orbit ∆. The orbits ∆ are constructed using the

previous function, then each block design is constructed by applying each permutation of

the group G to an orbit ∆. The result is associated to the index ∆ in the associative array

blocks.

Listing 6.2: Function for computing block designs from a primitive group of permutations.

/**

* Builds all block designs from a primitive group [KM02, Proposition 1]

*

* @param G::GrpPerm A primitive group

* @return blocks::Assoc An associative array indexed by orbits delta

* and containing corresponding block designs

*/

BlckDsgnsFromPrmtvGrp := function(G)

Deltas := AllDelta(G);

blocks := AssociativeArray();

for alpha in Keys(Deltas) do

for Delta in Deltas[alpha] do

blocks[Delta] := { Delta^g : g in G };

end for;

end for;

return blocks;

end function;

6.3/ VALIDATION

A bibliographic search revealed the existence of a correction of Prop. 2, by the same

authors [KM08]. This correction does not question the computation of block designs but

only their nature: they must be symmetric, and not self-dual, as summarized in Prop. 3.

Extract from Prop. 1, page 1 of [KM08]

Proposition 3: Let G be a finite primitive permutation group acting on the set

Ω of size n. Let α ∈ Ω, and let ∆ , {α} be an orbit of the stabilizer Gα of α. If

B = {∆g : g ∈ G} [. . . ] then D = (Ω,B) forms a symmetric 1-(n, |∆|, |∆|) design.

[. . . ]

This section tries to validate Prop. 2 and 3 using an exhaustive test, bounded by the

number of primitive groups used. We first present three Boolean functions that implement
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the properties of the block designs of Prop. 2 and 3.

The listing 6.3 presents a Boolean Magma function that characterizes the t-(v, k, λ) block

designs. It converts the set of sets blocks into an incidence structure, to determine with

the Magma function IsDesign [BCP97] if it is a t-block design. If so, it builds this block

design to extract its characteristics with the Magma function Parameters [BCP97], then it

checks that these characteristics are indeed those expected.

Listing 6.3: Characteristic function of a t-(v, k, λ) block design.

/**

* Characterization of t-(v,k,lambda) block designs.

*

* @param blocks::Set The design blocks.

* @param t::RngIntElt The number of distinct elements in lambda blocks.

* @param v::RngIntElt The number of blocks.

* @param k::RngIntElt The cardinality of blocks.

* @param lambda::RngIntElt The number of blocks contains the t elements.

* @return BoolElt Indicates that blocks is a t-(v,k,lambda) block design.

*/

CorrectDesign := function(blocks, t, v, k, lambda)

incidence := IncidenceStructure <v | blocks >;

if not IsDesign(incidence , t) then

return false;

end if;

record := Parameters(Design(incidence , t));

return record`v eq v and record`k eq k and record`lambda eq lambda;

end function;

Prop. 2 indicates that the constructed block design is a self-dual 1-(n, |∆|, |∆|) block design.

The listing 6.4 presents a boolean Magma function to check this condition. The function

has as parameters the number of elements of the block design, the block design itself and

its orbit ∆. It returns true if the constructed block design is a 1-(n, |∆|, |∆|) block design

(checked with the previous function) and if it is self-dual (checked with the function Magma

IsSelfDual [BCP97]).

Listing 6.4: Properties of the block designs of Prop. 2.

/**

* Conditions of block designs in [KM02, proposition 1]

*

* @param n::RngIntElt The number of points of the design

* @param blocks::Set The design blocks

* @param Delta::Set The delta that generated the design blocks

* @return BoolElt Indicates if the block design is a 1-(n,|delta|,|delta|) block

* design and a block design self-dual

*/

CorrectConstructionKM02 := function(n, blocks, Delta)

return CorrectDesign(blocks ,1,n,#Delta,#Delta) and IsSelfDual(Design <1,n|blocks >);

end function;

Magma already has a function IsSymmetric [BCP97] which characterizes a symmet-

ric block design, but according to a different definition than the one used by Key and
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Moori [KM02]. The Magma documentation does not specify it, but after some tests, it

seems that Magma implements the BIBD definition of symmetry. A BIBD (Balanced In-

complete Block Design) is a 2-(v, k, λ) block design. A BIBD is symmetric if it has as many

elements as blocks [Col10]. Thus, Magma considers as symmetrical only block designs

whose parameter t is equal to 2.

The listing 6.5 presents two Boolean Magma functions to verify the condition of Prop. 3

according to these two interpretations of the symmetry definition. The functions have as

parameters the number of elements of the block design, the block design itself and its

orbit ∆. The first (resp. second) function returns true if the constructed block design is a

block design 1-(n, |∆|, |∆|) and if it is a symmetric BIBD (resp. if it has as many blocks as

elements).

Listing 6.5: Properties of the block designs in Prop. 3 according to the symmetry defini-

tions of Magma and Key and Moori.

/**

* Characterization of 1-(n,|delta|,|delta|) block designs that are BIBD symmetric

*

* @param n::RngIntElt The number of points of the design

* @param blocks::Set The design blocks

* @param Delta::Set The delta that generated the design blocks

* @return BoolElt Indicates if the block design is a 1-(n,|delta|,|delta|) block

* design and a BIBD symmetric

*/

CorrectConstructionKM08_MagmaSym := function(n, blocks, Delta)

if not CorrectDesign(blocks, 1, n, #Delta, #Delta) then

return false;

end if;

return IsSymmetric(Design <1, n | blocks >);

end function;

/**

* Characterization of 1-(n,|delta|,|delta|) block designs with the same

* numbers of blocks and elements

*/

CorrectConstructionKM08_KMSym := function(n, blocks, Delta)

if not CorrectDesign(blocks, 1, n, #Delta, #Delta) then

return false;

end if;

record := Parameters(Design <1, n | blocks >);

return record`b eq record`v;

end function;

Listing 6.6 presents a validation function for Prop. 2 and 3. Magma proposes a database

composed of all the primitive permutation groups of degree3 less than or equal to 2 500,

that is 16 916 groups, and 7 643 primitive groups of higher degree. These groups con-

tain between 1 and 4 095 permutations. The Magma function PrimitiveGroups [BCP97]

returns the sequence of these primitive groups, sorted by increasing degree, then by in-

3The degree of a group of permutations on a finite set Ω is the cardinality of this set Ω.
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creasing cardinality (number of permutations). The code goes through this sequence and

computes all the block designs from the current group thanks to the function presented

in listing 6.2. For each block design, the code checks that it respects the conditions of

Prop. 2 and 3, with the two interpretations of symmetry for Prop. 3. The results are saved

in a file with the number of elements n, the index of the parent group in the sequence,

the associated orbit ∆ and the construction time of the tested block design. The calcula-

tions were performed on the computer of the Mésocentre de calcul de Franche-Comté,

for the 74 first primitive groups, in 574 107 seconds(about 7 days), up to the degree n = 14

included. This is the maximal degree that can be reached within the time limit of the

Mesocentre, limited to 8 days. These calculations can be reproduced freely for the first

48 primitive groups, up to degree n = 10, on the online calculator of Magma4, whose use

is limited to 120 seconds.

Listing 6.6: Code implementing a bounded exhaustive testing of Prop. 2 and 3.

/**

* Validation of Proposition 1 in [KM02] and [KM08]

*

* @param nbGrp::RngIntElt Number of smallest first primitive groups tested

*/

procedure verifProp(nbGrp)

allG := PrimitiveGroups(:Warning := false);

assert nbGrp le #allG;

printf "degree,numGrp,delta,isKM02,isKM08,isKM08_v2 ,time\n";

for numGrp := 1 to nbGrp do

G := allG[i];

n := Degree(G);

beginBlck := Realtime();

allBlck := BlckDsgnsFromPrmtvGrp(G);

tBlck := Realtime(beginBlck);

for Delta in Keys(allBlck) do

block := allBlck[Delta];

printf "%o,%o,%o,%o,%o,%o,%o\n",

n, numGrp, Sprintf("\"%o\"", Delta),

CorrectConstructionKM02(n, block, Delta),

CorrectConstructionKM08_MagmaSym(n, block, Delta),

CorrectConstructionKM08_KMSym(n, block, Delta),

tBlck;

end for;

end for;

end procedure;

From the first 74 primitive groups of permutations, this program constructs 926 block de-

signs, that is, all possible block designs for all primitive permutation groups of degree less

than or equal to 13 and two groups of degree 14. The program found no counterexamples

for Prop. 2 and 3. On the other hand, it did find 398 counterexamples for the erroneous

4http://magma.maths.usyd.edu.au/calc/

http://magma.maths.usyd.edu.au/calc/
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interpretation of Prop. 3. This is a high number for a small difference between the two

definitions of symmetry. The smallest counterexample is the symmetric group S 2 with

α ∈ {1, 2}.

Example 4: Let S 2 = {Id, (1, 2)} be the symmetric group on Ω = {1, 2} and α = 1. The

stabilizer of element 1 in S 2 is the group G1 = {Id} and the orbits of this group are the

sets {1} and {2}. The only possible orbit ∆ is the set {2}. The constructed block design is

B = {∆Id,∆(1,2)} = {{2}Id, {2}(1,2) = {{2}, {1}}. The block design B is composed of 2 blocks of

size 1 and 1 distinct element is found in exactly 1 block, so it is a 1-(2, 1, 1) block design.

It is not a 2-(v, k, λ) block design, which makes it non-symmetric according to Magma.

But it is symmetric according to the definition of Key and Moori, because it has as many

elements as blocks.

6.4/ CONCLUSION

We have given an example of the application of programming and intensive testing to the

verification of mathematical properties. We have applied bounded exhaustive testing to

two propositions for the construction of block designs, according to two different interpre-

tations, which allowed us to validate these propositions and to remove an ambiguity about

their possible interpretations. In addition to documenting the code, we also identified a

good practice: reducing the distance between the program and the theorem it formalizes

reassures the reader on the coherence between the two.

A global perspective would be to establish and disseminate further general principles for

the reproducibility and verification of mathematical publications of a computational nature.

A closer goal at the end of this work was to explore more finite geometries construction

methods and to link them back to a study of contextuality. This is achieved in the following

chapter.





7

AUTOMATED SYNTHESIS OF

CONTEXTUALITY PROOFS FROM

SUBSPACES OF SYMPLECTIC POLAR

SPACES

This chapter presents a work posted on arXiv [dHGM21b] and presented at the interna-

tional conference on Quantum Physics and Logic (QPL) in 2021 [dHGM21a]. We expect

to complete it further and submit it for publication in the coming months.

7.1/ INTRODUCTION

In quantum information theory, many paradoxes of the early years of quantum physics,

like superposition or entanglement, have turned on to be considered as resources for

the development of quantum technologies when they exhibit non-classical behavior. One

of these resources is quantum contextuality. The Kochen-Specker Theorem [KS67], also

proved by Bell [Bel66], is a fundamental result that establishes that no non-contextual hid-

den variables theories can reproduce the outcomes of quantum mechanics. First demon-

strated as a mathematical result, quantum contextuality has since been tested experi-

mentally [ARBC09, KZG+09] and very recently checked on an online quantum computer

[DRLB20, Hol21]. The importance of contextuality in quantum computation has been

shown in [HWVE14].

The original proof of the Kochen-Specker Theorem was based on the impossibility to

color bases of rays in a 3 dimensional space according to some constraints imposed by

the law of quantum physics. This proof involves 117 rays. Many other proofs intending to

simplify the initial argument have also been proposed [CEG96, WA11, Pla12].

91
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In the 90’s David Mermin [Mer93] and Asher Peres [Per90] introduced a different kind of

argument to prove quantum contextuality. Their observable-based approach is the one

that we consider in this chapter. We restate their argument, also known as the “Mermin-

Peres magic square”, as an example of contextual geometry, in Sect. 7.2.

The Mermin-Peres magic square and the Mermin pentagram, a three-qubit observable-

based proof of the Kochen-Specker Theorem, have been investigated in the past 15 years

from the perspective of finite geometry. In [HS17] it was proven by geometric arguments

that these two proofs are the “smallest” ones in terms of number of observables and

contexts. In [SPPH07] it was shown that the 10 possible Mermin-Peres magic squares

were hyperplanes of a point-line geometry known as the doily (see details in Sect. 7.3)

and in [PSH13] the number of different Mermin pentagrams was obtained and explained

latter in [LHS17]. Mermin-Peres magic squares have also been considered from the

perspectives of graph theory and binary constraint system games [Ark12, CM13].

In this chapter we address automatic checking of observable-based proofs of the Kochen-

Specker Theorem with higher numbers of contexts and observables. In particular we

check that the symplectic polar spaces Wn of rank n and order 2 are contextual for

n = 2, 3, 4, when seen as point-line geometries encoding the commutation relations

in the n-qubits Pauli group. We also prove that all hyperbolic and elliptic quadrics,

which are subgeometries of Wn defined by quadratic equations, are contextual, again

for n = 2, 3, 4. Despite the fact that elliptic and hyperbolic quadrics and their connection

with multiple qubits Pauli observables have already been studied in the quantum infor-

mation literature [SGL+10, LHS17], the contextuality property of those configurations

has not been established before. Because those configurations involve a lot of observ-

ables and contexts (for instance 135 observables and 1575 contexts for n = 4), we use

a computer software to check their contextuality. Looking at observable-based proofs of

contextuality with large numbers of observables and contexts can be interesting to build

macroscopic state-independent inequalities that violate non-contextual hidden variables

inequalities [Cab08, Hol21]. Another motivation comes from quantum game theory, as

more sophisticated proofs could lead to more complex game scenarios than for instance

the Magic square game [BBT05].

In Sect. 7.2 we recall the perspective of finite geometry on observable-based proofs of the

Kochen-Specker Theorem, and we explain how these proofs translate to the resolution of

a linear system over the two-elements field F2. In Sect. 7.3 we recall how the symplectic

polar space Wn of rank n and order 2 encodes the commutation relations in the n-qubits

Pauli group, and we explain how contextual configurations of observables live in Wn as

subgeometries. In Sect. 7.4 we precisely define the subgeometries characterized by

quadratic equations, and we provide the contextuality results established by our program

for these geometries. Sec. 7.5 is dedicated to concluding remarks. The code mentioned
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in this article is publicly available at https://quantcert.github.io/Magma-contextuality.

7.2/ CONTEXTUAL GEOMETRIES

We first propose a precise definition of the notion of contextual geometry, based on pre-

vious work on the geometrical perspective on observable-based proofs of the Kochen-

Specker Theorem. Our definition may not be as general as possible, but it is sufficient

for the present work. We illustrate it with the well-known example of the Mermin-Peres

magic square. Then we reformulate the contextuality property as inconsistency of a linear

system with coefficients in the field of modulo-2 arithmetic.

A quantum geometry is a pair (O,C) where O is a finite set of observables (unitary finite-

dimensional Hermitian operators) and C is a finite set of subsets of O, called contexts,

such that

O.1 each observable M ∈ O satisfies M2 = Id (so, its eigenvalues are in {−1, 1});

O.2 any two observables M and N in the same context are commuting, i.e., MN = NM;

O.3 the product of all observables in each context is either Id or −Id.

The elements of O and C are the points and lines of the geometry. Let the context valua-

tion associated to (O,C) be the function e : C → {−1, 1} defined by e(c) = 1 if the product

of all the observables in the context c is Id, and −1 if it is −Id.

A contextual geometry is a quantum geometry such that there is no (observable) valuation

f : O→ {−1, 1} such that

∀c ∈ C,
∏
M∈c

f (M) = e(c). (7.1)

Otherwise, the geometry is said to be non-contextual.

7.2.1/ EXAMPLE: MERMIN-PERES MAGIC SQUARE

This section presents the Mermin-Peres square completed with some notions specific to

this chapter. The content of this chapter is broadly already presented in Sec. 2.4.1, but is

kept here for ease of reading.

We recall that the usual Pauli matrices are

X =

0 1

1 0

 ,Y =
0 −i

i 0

 and Z =

1 0

0 −1

 . (7.2)

https://quantcert.github.io/Magma-contextuality
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X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

Figure 7.1: The Mermin-Peres magic square

Let us present the Mermin-Peres magic square as a quantum geometry and restate the

argument of Mermin and Peres for its contextuality. The original configuration of nine two-

qubit observables proposed by Mermin [Mer93, Sect. V] is showcased in Figure 7.1. It is

the quantum geometry (O,C) where O = {X⊗ I, I⊗X, X⊗X, I⊗Y,Y⊗ I,Y⊗Y, X⊗Y,Y⊗X,Z⊗Z}

and C = {c1, c2, c3, c4, c5, c6}, with c1 = {X ⊗ I, I ⊗ X, X ⊗ X}, c2 = {I ⊗ Y,Y ⊗ I,Y ⊗ Y},

c3 = {X ⊗ Y,Y ⊗ X,Z ⊗ Z}, c4 = {X ⊗ I, I ⊗ Y, X ⊗ Y}, c5 = {I ⊗ X,Y ⊗ I,Y ⊗ X} and c6 =

{X⊗X,Y⊗Y,Z⊗Z}. These six sets of observables are contexts, since they contain mutually

commuting observables whose product is ±Id. In this example the context valuation e is

such that e(c1) = . . . = e(c5) = 1 and e(c6) = −1. In Figure 7.1 the 5 positive contexts

c1 to c5 whose product of observables is +Id are depicted as simple lines, whereas the

negative context c6 whose product of observables is −Id is depicted as a double line.

Since the eigenvalues of each observable are ±1 and the measurements on each context

are compatible (because the observables are mutually commuting) the product of the

observed eigenvalues should be equal to the eigenvalue of the product of observables.

In other words when a context is positive (resp. negative), i.e., when the product of its

observables is +Id (resp. −Id), then quantum mechanics says that the product of the

observed measurements should be +1 (resp. −1).

Now, a simple argument shows that there is no non-contextual, i.e. not context-

dependent, deterministic function f that can assign an outcome ±1 to each observable

and satisfy at the same time the 6 constraints: if one multiplies all together the outcomes

of the 6 contexts given by a non-contextual deterministic function, the result will be +1

because each node will show up twice in the product. However, because there is only

one negative context in the Meres-Peres magic square, this product should be −1 if all

constraints are satisfied.

The observable valuation f in the contextuality property (7.1) formalizes the non-

contextual hidden variables hypothesis. If there were to be a deterministic non-contextual

theory explaining the outcomes of quantum physics, there would be some processes in

Nature, hidden from us, that would allow us to calculate these outcomes. Those hidden

processes are generally called hidden variables and here f is a non-contextual function

which could depend on those hidden variables: for a set of hidden variables λ, f (M) is a
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shortcut for f (λ,M).

7.2.2/ CONTEXTUALITY AS A LINEAR PROBLEM

Let F2 = ({0, 1},+,×) be the two-elements field of modulo-2 arithmetic. Let (O,C) be a

quantum geometry with a set O = {M1, . . . ,Mp} of p = |O| observables/points and a set

C = {c1, . . . , cl} of l = |C| contexts/lines. Its incidence matrix A ∈ Fl×p
2 is defined by Ai, j = 1

if the i-th context ci contains the j-th observable M j. Otherwise, Ai, j = 0. Its valuation

vector E ∈ Fl
2 is defined by Ei = 0 if e(ci) = 1 and Ei = 1 if e(ci) = −1, where e is the context

valuation of (O,C).

With these notations, the quantum geometry (O,C) is contextual iff the linear system

Ax = E (7.3)

has no solution in Fp
2 . The matrix A being of size l× p with l ≤ p, Eq. 7.3 can be efficiently

solved with a complexity O(p3), e.g. by Gaussian elimination.

Finally note that A is built from the incidence structure of the quantum geometry (O,C)

while the vector E comes from the signs of the contexts. In other words the left-hand

side of Eq. 7.3 only depends on the geometric structure – that will be revisited in the

next section – while the left-hand side depends on the outcomes predicted by quantum

physics.

7.3/ CONTEXTUAL CONFIGURATIONS OF THE SYMPLECTIC POLAR

SPACE

We aim to automate the generation of quantum geometries and the detection of their

contextuality, with observables restricted to the elements of the n-qubits Pauli group Pn,

i.e. the group of the n-fold tensor products of Pauli matrices. We study them through their

encoding as vectors from a vector space over the two-elements field F2. This encoding

does not preserve all information, in particular we loose the commutation relations and the

signs of the contexts. At the geometrical level, the commutation relation will be recovered

by introducing a nondegenerate symplectic form (Sect. 7.3.1). The signs of the contexts

will be determined as detailed in Sect. 7.3.2.
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7.3.1/ THE SYMPLECTIC POLAR SPACE Wn

Let Vn = F
2n
2 be the vector space of dimension 2n over the two-elements field F2. Let

⊗
denote the (generalized) tensor product. An element of the n-qubits Pauli group Pn is an

operator O which can be factorized as O = s
⊗

i∈[1..n] Zai Xbi with ai, bi ∈ F2 and a phase

s ∈ {±1,±i}. We denote by Cn the center of Pn, i.e. Cn = {±I,±iI}. The surjective map π :

Pn → Vn defined by π(s
⊗

i∈[1..n] Zai Xbi) = (a1, b1, . . . , an, bn) factors to the isomorphism π :

Pn/Cn → Vn such that π(O) = (a1, b1, . . . , an, bn), where O is the class of O in Pn/Cn [Hol21,

Sect. 2].

The map π has several crucial aspects: its images are more elementary than the original

objects (binary vectors replace Hermitian matrices), and π preserves some key properties

about Pn. As defined, π already transforms the matrix product into the sum in Vn. In order

to encode commutation relation, we define the inner product (also called symplectic form)

on Vn as ⟨x|y⟩ = xJy⊺, with

J =


0 1
1 0

. . .
0 1
1 0

.
One can also define the inner product by developing the previous formula: for two vectors

x = (a1, b1, . . . , an, bn) and y = (a′1, b
′
1, . . . , a

′
n, b
′
n), their inner product is defined as ⟨x|y⟩ =∑n

i=1 aib′i + a′ibi.

Using this inner product, we have
〈
π(O)

∣∣∣∣π(O′)
〉
= 0 iff the operators in O and O′ com-

mute [Hol21, Sect. 2].

Since the trivial n-qubits Pauli operator I does not correspond to a measurement, we

eliminate its class I from Pn/Cn and the corresponding neutral element π(I) = (0, . . . , 0)

from Vn. This restriction of π is a bijection between the set of non trivial n-qubits Pauli

observables and the projective space PG(2n − 1, 2), whose points are nonzero vectors in

Vn.

We can now define a counterpart to a quantum geometry in PG(2n − 1, 2). A quantum

configuration is a pair (P, L) where P is a finite set of points of PG(2n−1, 2) and L is a finite

set of subsets of P, such that

S.1 any two vectors V and W in the same element of L are commuting, i.e. ⟨V |W⟩ = 0;

S.2 the sum of all vectors in each element of L is (0, . . . , 0).

One can see that this definition of a quantum configuration corresponds through π to

that of a quantum geometry given in Sect. 7.2. Indeed condition O.1 is satisfied by the

elements of Pn, so the fact that we use only points from PG(2n−1, 2) satisfies it. Condition

O.2 is in correspondence with Condition S.1 and Condition O.3 is in correspondence with

Condition S.2.
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A totally isotropic subspace of PG(2n−1, 2) is a linear subspace S of PG(2n−1, 2) such that

⟨a|b⟩ = 0 for any a, b ∈ S . The name comes from the quadratic forms which are said to be

isotropic when they are annihilated on a non null point. Thus, Condition S.1 rewrites as “all

elements of L are totally isotropic subspaces”. The space of totally isotropic subspaces of

PG(2n−1, 2) for ⟨|⟩ is called the symplectic polar space of rank n and order 2 and is denoted

by W(2n − 1, 2) (abbreviated as Wn). The symplectic space Wn is a set of subspaces of

different dimensions: the most elementary ones are the points of Wn, they are the totally

isotropic subspaces of dimension 0. In all rigor they are the singletons {v}, for all points

v ∈ PG(2n − 1, 2), but we identify them with their element v. They do not satisfy Condition

S. 2, whereas all other totally isotropic subspaces (of positive dimension) satisfy it.

In this work, we only consider the pairs (P, L) such that P is a set of points in Wn and L

is a subset of Wn composed of totally isotropic subspaces with the same positive dimen-

sion. By construction, such a (P, L) satisfies Conditions S.1 and S.2, so it is a quantum

configuration.

Example 5: The symplectic polar space of rank 2 and order 2, W2 = W(3, 2), corresponds

to Pauli operators acting on two qubits. It has 15 points (the subspaces of dimension 0)

and 15 lines (the subspaces of dimension 1), and no subspace of higher dimension. It is

represented in Fig. 7.2 as a finite geometry, where each point of the symplectic space is

a point of the geometry and the three elements of each isotropic subspace of dimension

1 are shown as a line.

(0, 0, 1, 1)

(1, 1, 1, 1)

(1, 1, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 1, 1, 0)

(0, 1, 0, 1)

(1, 0, 1, 1)

(1, 1, 1, 0)

(1, 0, 1, 0)

(0, 1, 1, 1)

(1, 1, 0, 1) (1, 0, 0, 0)

(0, 0, 0, 1)

(1, 0, 0, 1)

Figure 7.2: The Doily, a point-line representation of W2 = W(3, 2)

Notice an importance difference compared to traditional geometry: two points are not

necessarily aligned in finite geometry. For instance, the points (0, 1, 1, 1) and (1, 0, 1, 1) are

not on the same line since ⟨(0, 1, 1, 1)|(1, 0, 1, 1)⟩ = 1 , 0.
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In W2, the pair (P, L) may have the following content:

P = {(0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1),

(1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1),

(1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 0)}

and

L = {{(0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1)},

{(1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)},

{(1, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 0)},

{(0, 0, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)},

{(0, 1, 0, 0), (0, 0, 1, 1), (0, 1, 1, 1)},

{(0, 1, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0)}}

This is in fact the Mermin-Peres square, presented in Fig. 7.1

Example 6: Another example of symplectic space may be the even more elementary

W1. It contains only three points, (0, 1), (1, 0) and (1, 1) and no subspaces of positive

dimension.

7.3.2/ CONTEXT VALUATION, VALUATION VECTOR AND CONTEXTUAL CONFIGU-
RATIONS

Any quantum configuration (P, L) in Wn with p = |P| points and l = |L| (context) lines

determines an incidence matrix A ∈ Fl×p
2 defined by Ai, j = 1 if the i-th element of L

contains the j-th point in P. However, it provides no context/line valuation e, on which

its contextuality however depends. A context valuation can be derived as follows from

an interpretation of points in Wn as Pauli operators, in other words from a right inverse

ρ of the map π (π ◦ ρ = id). Among all these inverses, we consider here the map ρ :

PG(2n − 1, 2) → Pn defined by ρ
(
(a1, b1, . . . , an, bn)

)
=

⊗
k Ok with Ok = (−i)akbk Zak Xbk . One

can develop this expression as

Ok =



I if (ak, bk) = (0, 0)

X if (ak, bk) = (0, 1)

Y if (ak, bk) = (1, 1)

Z if (ak, bk) = (1, 0)

.
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The corresponding context valuation is the map eρ : L → {−1, 1} such that
∏

p∈l ρ(p) =

eρ(l) Id for all l ∈ L. It results from the commutation relations on each context line that

the values of eρ(l) can only be ±1. The corresponding valuation vector Eρ is defined from

eρ as in Sect. 7.2.2. Finally, a contextual configuration is a triple (P, L, ρ) composed of a

quantum configuration (P, L) and an interpretation ρ such that the linear system Ax = Eρ

has no solution in Fp
2 (in this definition, A is the incidence matrix of (P, L)).

Example 7: After replacing each point in W2 by its image by ρ, Fig. 7.2 becomes Fig. 7.3.

The product of all observables on each line is I (marked as a single black line) or −I

(marked as a doubled red line). It determines the values 1 and −1 of eρ. With these

elements, it is well-known that the Doily is a contextual configuration (see e.g. [Cab08]).

I ⊗ Y

Y ⊗ Y

Y ⊗ I

X ⊗ I

I ⊗ Z
X ⊗ Z

X ⊗ X

Z ⊗ Y

Y ⊗ Z

Z ⊗ Z

X ⊗ Y

Y ⊗ X Z ⊗ I

I ⊗ X
Z ⊗ X

Figure 7.3: The Doily with Pauli operators

Notice that the Mermin-Peres square shown in Fig. 7.1 is a subgeometry of the Doily, as

shown in Fig. 7.4.

7.4/ CONTEXTUAL SUBSPACES OF SYMPLECTIC POLAR SPACES

In order to automate the detection of a large number of contextual configurations, we first

fix some programmable criteria to characterize the candidate geometries. We first define

these geometries. Then we sum up the results obtained.

A line of Wn is a totally isotropic subspace of Wn of dimension 1. An element of Wn of

maximal dimension (n − 1) is called a generator. A quadric of Wn is the set of points that

annihilate a given quadratic form. The most elementary quadratic form that we could

define is Q0(x) = x1x2 + . . . + x2n−1x2n if x = (x1, x2, . . . , x2n). A form is an homogeneous



100 CHAPTER 7. CONTEXTUALITY PROOF SYNTHESIS

I ⊗ Y

Y ⊗ Y

Y ⊗ I

X ⊗ I

I ⊗ Z
X ⊗ Z

X ⊗ X

Z ⊗ Y

Y ⊗ Z

Z ⊗ Z

X ⊗ Y

Y ⊗ X Z ⊗ I

I ⊗ X
Z ⊗ X

Figure 7.4: The Mermin-Peres square as a subgeometry of the Doily

polynomial – a sum of monomial of same degree – and it is a quadratic form if the degree

of the monomials is 2. An hyperbolic quadratic form is a form Qp defined by Qp(x) =

Q0(x) + ⟨x|p⟩ where p ∈ Vn annihilates Q0, i.e. when Q0(p) = 0, whereas an elliptic

form is such a form Qp where p does not annihilate Q0. Finally, an hyperbolic (resp.

elliptic) quadric symplectic polar space is a quadric corresponding to the zero locus of an

hyperbolic (resp. elliptic) quadratic form. The perpset of the point v ∈ Wn is the set of all

points w isotropic to v, i.e. such that ⟨v|w⟩ = 0.

Remark 7: A (geometric) hyperplane is a set of points in Wn such that any line of Wn either

has a single point of intersection with the hyperplane, or is fully contained in it. The 10

Mermin-Peres squares of W2 are geometric hyperplanes. It is also known that the elliptic

quadrics, the hyperbolic quadrics and the perpsets are the only types of hyperplanes in

Wn [VL10]. In fact the 10 Mermin-Peres squares are the 10 hyperbolic quadrics of W2.

This remark motivates our choice to study the contextuality of all types of hyperplanes in

Wn.

Given these definitions, we consider the following families of geometries:

G.1 all points and all lines of Wn;

G.2 all points and all generators of Wn;

G.3 all points and all lines in one hyperbolic quadric in Wn, for all hyperbolic quadrics in

Wn;

G.4 all points and all lines in one elliptic quadric in Wn, for all elliptic quadrics in Wn;

G.5 all points and all lines in one perpset in Wn, for all perpsets of a given point of Wn.
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Example 8: For W2, the single element of the family G.1 is represented by the Doily (Fig.

7.2): the set of points P is the set of points of W2 and the set of lines L is the set of lines

represented in the Doily. There is always a single geometry in this family.

In the 2 qubits case, the lines are the same as the generators (the lines are the subspaces

of maximal dimension). This is not the case for n > 2 though. This means that the single

element of the family G.2 is also represented by the Doily in the two qubits case.

In the 2 qubits case, the Mermin-Peres square is an example of hyperbolic quadric, this

means that Fig. 7.4 is an example of element of the family G.3 (this particular quadric is

generated by the point X ⊗ X).

Until now, I have not shown any example of elliptic quadric. To do so, let’s take a point

that does not annihilate Q0, for instance p = Z ⊗ X. The set of points that annihilate Qp is

P = {X ⊗ I,Y ⊗ X,Y ⊗ Z,Z ⊗ I,Y ⊗ Y}. The corresponding element of the family G.4 is the

geometry (P, L) where P is given above and L is the set of all lines such as each line is

both a line of Wn and a subset of P. This set L is always empty for 2 qubits, which explains

the N/A in table 7.2.

Finally, the family G.5 is the set of all perpsets of Wn, which means that we can exhibit an

example by taking a specific perpset. Let us consider the perpset generated by Y ⊗ X, if

is composed of all points non collinear with Y ⊗ X, i.e. P = {I ⊗ X,Z ⊗ Y,Y ⊗ X,Y ⊗ I, X ⊗

Z, X ⊗ Y,Z ⊗ Z}. As is previous examples, we are looking for lines of W2 which are subsets

of P, this gives us L =
{
{I ⊗ X,Y ⊗ X,Y ⊗ I}, {Y ⊗ X, X ⊗ Y,Z ⊗ Z}, {Z ⊗ Y,Y ⊗ X, X ⊗ Z}

}
.

7.4.1/ RESULTS

Our contextual configurations detection program is implemented in the language of the

well-established tool Magma for theoretical mathematics. In particular, Magma provides

us with F2 and PG(2n − 1, 2) equipped with the symplectic form. From this, our program

generates the incidence structure of the generators of Wn – using the commutation re-

lations of the points of Wn viewed as a graph and the integrated Magma function for

buildings incidence structures from graphs – and uses it to compute all totally isotropic

subspaces of dimension 1 with an in-house algorithm. For G.1, G.3, G.4 and G. 5 the

totally isotropic subspaces of dimension 1 are scanned and possibly filtered according

to the characteristics of each geometry, to build an incidence matrix. For G.2 the totally

isotropic subspaces of dimension (n − 1) and the incidence matrix are built on the fly. For

all these geometries, we compute their line valuation, thanks to an implementation of ρ.

Then, contextuality is detected by a call to the Magma function IsConsistent which de-

termines whether a linear system has a solution. The code ran on the supercomputer of

the Mésocentre de calcul de Franche-Comté.
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For 2 qubits, the computation takes less than 0.1s, for 3 qubits the computation takes

around 5s. But for 4 qubits, the computation already takes around 10min, and for 5

qubits, the computation takes around 24h.

These durations are consistent with the algorithmic complexity of the functions computing

the families of geometries, presented in Tab. 7.1. These complexities are calculated as

follows: the symplectic space contains 22n points, so iterating over it takes O(22n) steps.

Each line contains three points, the third one being the sum of the other two, so the

complexity to generate all lines (for G.1) is O
(
22n × 22n

)
= O

(
24n

)
. This is consistent with

the number (4n − 1)(4n−1 − 1)/3 of lines in the symplectic space. To compute the set of

all quadrics, we iterate over all the points. For each point we generate its quadratic form

and we iterate over all the points to find those who annihilate this quadratic form. These

points are the points of the quadric. The complexity of these two operations is negligible

compared to that of the next one: iteration over all the lines of the symplectic space, a

line being selected if it is a subset of the points of the quadric. This yields a complexity

in O
(
22n × 24n

)
= O

(
26n

)
. The computation for the perpsets is very similar. For the family

G.2 of generators, we use the property that they are the blocks of the incidence structure

whose elements are the points of the symplectic space and such that two points are

incident if and only if they commute. The most expensive operation is the generation of

the
∏

i∈[1..n](2i+1) blocks of this incidence structure, resulting in a complexity in O
(
2n(n+1)/2

)
.

Geometries Complexity
Lines (G.1) O

(
24n

)
Generators (G.2) O

(
2n(n+1)/2

)
Quadrics and Perpsets (G.3 + G.4 + G.5) O

(
26n

)
Table 7.1: Algorithmic complexity for each geometry family

Table 7.2 presents the contextuality results in a table. Each entry yields the contextuality

as well as the number of elements in the family. Note that the elliptic quadrics for n = 2,

also known as ovoids, do not contain any line. Therefore there are no contexts in this case

and that is why we indicate here "N/A". We also could have skipped the computation of

the generators for n = 2, because their dimension is n − 1 = 1, so they are lines, already

computed for (G.1). We kept it as it is reassuring to see that we indeed obtain the same

result for both families.

The cells in bold font represent the results that were not previously known. In each cell,

"C" means that the geometries are contextual and "N" means they are not.

The number of objects in each class was previously known, [VL10] gives a good overview

of these numbers, which we recall and complete in Tab. 7.3 for convenience.

Remark 8: The contextuality of the configurations (G.1) has been established in [Cab08].

We notice that the contextual nature of a given configuration remains the same among all
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Geometries n = 2 n = 3 n = 4 n = 5
Lines (G.1) C(1) C(1) C(1) C(1)

Generators (G.2) C(1) N(1) N(1) N(1)
Hyperbolics (G.3) C(10) C(36) C(136) C(528)

Elliptics (G.4) N/A (6) C(28) C(120) C(496)
Perpsets (G.5) N(15) N(63) N(255) N(1023)

Table 7.2: Contextuality results

Geometries (P, L) Cardinality of P Cardinality of L Number of geometries
Lines (G.1) 4n − 1 (4n−1)(4n−1−1)

3 1
Generators (G.2) 2n−1 − 1

∏
i∈[1..n](2i + 1) 1

Hyperbolics (G.3) 4n+2n

2 − 1 ( 4n+2n

2 − 1)( 4n−1+2n−1

2 − 1)/3 4n+2n

2
Elliptics (G.4) 4n−2n

2 − 1 ( 4n−2n

2 − 1)( 4n−1−2n−1

2 − 1)/3 4n−2n

2
Perpsets (G.5) 4n

2 − 1 4n−1 − 1 4n − 1

Table 7.3: Cardinalities for each geometry family and their members

the geometries in the same family, and for all sizes. For instance all hyperbolic quadrics

are contextual. The only exception is G.2 where this is not the case for n = 2, but as

explained earlier, this comes from the fact that, in this case, generators are in fact lines.

From the geometry construction it is clear that for a fixed n, the matrix A in Eq. 7.3 is the

same (up to a change of basis) for all geometries in the same family (it can also be seen

from the fact that the symplectic group Sp(2n, 2) acts transitively on the set of geometric

hyperplanes [VL10]). However the vector E of the right-hand side of Eq. 7.3 is not the

same for all hyperbolic quadrics. To get a better understanding of this, it will be interesting

to understand for instance how the symplectic group Sp(2n, 2) acts on the labeling of the

contexts of Wn.

7.5/ CONCLUSION

To sum up, Sect. 7.2 introduced observable-based contextuality proofs and a way to

detect them by solving a single linear system per proof. Sect. 7.3 showed how to generate

these proofs using a simpler representation of the observables and how to translate these

proofs into objects from Sect. 7.2. This allowed us to generate entire families of proofs in

Sect. 7.4.

Doing this, we have performed a systematic study of observable-based contextuality

proofs with larger numbers of observables than in previous work. This systematic ap-

proach brought us several research directions for future work. First, we have now several

conjectures that we would like to further investigate, e.g. interpretation (choice of ρ) in-

variance of given results, and scale invariance of contextuality for a given family. We
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also intend to perform formal proofs of theorems about observable-based proofs of the

Kochen-Specker Theorem, based on the formal definitions of the notions of contextual

geometry and contextual configuration proposed in the present chapter.

This study also raised interesting questions about the structure of the geometries sets.

Indeed, if some families of geometries are contextual and others are not, it would be

interesting to discover an underlying structure justifying this fact. This lead us to the work

presented in the following chapter.



8

TAXONOMY OF POLAR SUBSPACES OF

MULTI-QUBIT SYMPLECTIC POLAR

SPACES OF SMALL RANK

This chapter presents parts of a published article [SdHG21] closely following the content

of Chap. 7. Various notions are redefined in this chapter, to make it self-contained. The

reader might be surprised to see that some notions are defined differently, this is the case

because different definitions fit better different needs, this is for example the case for the

symplectic form. But the various definitions are in the end equivalent. Another notation

difference is kept to fit the original paper: a quantum configuration (P, L) is the same as

a point-line incidence geometry Γ(P, L). I did not include some elements (most notably

section 5) of the published article because I mostly participated in the early sections.

Furthermore, the latter sections of the article, although very interesting, do not add new

material considering the big picture of this manuscript: they do not seem to add new

possibilities of formal proof of protocol contextuality.

8.1/ INTRODUCTION

Some fifteen years ago it was discovered (see, e.g., [SP07, PS08, HOS09, Tha09]) that

there exists a deep connection between the structure of the n-qubit Pauli group and that

of the binary symplectic polar space of rank n, W(2n − 1, 2), where commutation relations

between elements of the group are encoded in collinearity relations between points of

W(2n − 1, 2). This connection has subsequently been used to get a deeper insight into,

for example, finite geometric nature of observable-based proofs of quantum contextual-

ity (for a recent review, see [Hol19a]), properties of certain black-hole entropy formulas

[LSVP09] and the so-called black-hole/qubit correspondence [BDL12], leading to finite-

geometric underpinning four distinct Hitchin’s invariants and the Cartan invariant of form

105
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theories of gravity [LHS17] and even to an intriguing finite-geometric toy model of space-

time [LH19]. This group-geometric connection was further strengthened by making use

of the concept of geometric hyperplane and that of the Veldkamp space of W(2n − 1, 2)

[VL10]. As per quantum contextuality, famous two-qubit Mermin-Peres magic squares

were found to be isomorphic to a special class of geometric hyperplanes of W(3, 2) called

grids [SPPH07], whereas three-qubit Mermin pentagrams were found to have their natu-

ral settings in the magic Veldkamp line of W(5, 2) [LS17], being also isomorphic – under

the grassmannian correspondence of type Gr(2, 4) – to ovoids of W(3, 2) [SL12]. Con-

cerning the black-hole/qubit correspondence, here a key role is played by the geometric

hyperplane isomorphic to an elliptic quadric of W(5, 2). Interestingly, form theories of grav-

ity seem to indicate that also a certain part of the magic Veldkamp line in the four-qubit

symplectic polar space, W(7, 2), and the associated extended geometric hyperplanes are

of physical relevance.

From the preceding paragraph it is obvious that revealing finer traits of the structure of

binary symplectic polar spaces of small rank can be vital for further physical applications

of these spaces. Having this in view, we will focus on sets of W(2n − 3, 2)’s located in

W(2n − 1, 2), for n = 2, 3, 4, providing their comprehensive observable-based taxonomy.

Key parameters of our classification of such subspaces of W(2n−1, 2) will be: the number

of negative lines they contain (which is also an important parameter when it comes to

quantum contextuality), the distribution of different types of observables they feature, the

character of the geometric hyperplane a subspace of a given type shares with the distin-

guished (non-singular) quadric of W(2n − 1, 2) and, in the case of refined ‘decomposition’

of three-qubit W(3, 2)’s, also the very structure of their Veldkamp lines.

The chapter is organized as follows. Sec. 8.2 provides the reader with the necessary

finite-geometric background and notation. Sec. 8.3 deals with W(3, 2) and the hierarchy

of its triads, Sec. 8.4 – the central subsection of the chapter – addresses the three-

qubit W(5, 2) and its doilies and Sec. 8.5 classifies W(5, 2)’s living in the four-qubit W(7, 2).

Finally, Sec. 8.6 is devoted to concluding remarks.

8.2/ FINITE GEOMETRY BACKGROUND

Given a d-dimensional projective space PG(d, 2) over F2, a polar space P in this projective

space consists of the projective subspaces that are totally isotropic/singular with respect

to a given non-singular bilinear form; PG(d, 2) is called the ambient projective space of

P. A projective subspace of maximal dimension in P is called a generator; all generators

have the same (projective) dimension r − 1. One calls r the rank of the polar space.

Polar spaces of relevance for us are of three types (see, for example, [HT16, Cam92]):
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symplectic, hyperbolic and elliptic. Recall (Chap. 7) the symplectic polar space W(2n −

1, 2), for n ≥ 1, consists of all the points of PG(2n − 1, 2), {(x1, x2, . . . , x2n) : x j ∈ {0, 1},

j ∈ {1, 2, . . . , 2n}}\{(0, . . . , 0)}, together with the totally isotropic subspaces with respect to

the standard symplectic form

σ(x, y) = x1yn+1 − xn+1y1 + x2yn+2 − xn+2y2 + · · · + xny2n − x2nyn. (8.1)

This space features

|W |p = 4n − 1 (8.2)

points and

|W |g = (2 + 1)(22 + 1) · · · (2n + 1) (8.3)

generators. The standard hyperbolic orthogonal polar space (sometimes referred simply

as hyperbolic space) Q+(2n−1, 2), for n ≥ 1, is formed by all the subspaces of PG(2n−1, 2)

that lie on a given non-singular hyperbolic quadric, with the standard equation

x1xn+1 + x2xn+2 . . . + xnx2n = 0. (8.4)

The standard hyperbolic space as well as each hyperbolic space obtained by symplectic

transformation (variable change of the coordinates maintaining the standard equation) of

the standard hyperbolic space contains

|Q+|p = (2n−1 + 1)(2n − 1) (8.5)

points and there are

|W |Q+ = |Q+|p + 1 = (2n−1 + 1)(2n − 1) + 1 (8.6)

copies of them in W(2n−1, 2). Finally, the standard elliptic orthogonal polar space Q−(2n−

1, 2), for n ≥ 2, comprises all points and subspaces of PG(2n−1, 2) satisfying the standard

equation

(x1xn+1 + x2
1 + x2

n+1) + x2xn+2 + · · · + xnx2n = 0, (8.7)

XY + X2 + Y2 being the only irreducible polynomial of degree 2 over F2. The standard

elliptic space as well as each elliptic space obtained by symplectic transformation (vari-

able change of the coordinates maintaining the standard equation) of the standard elliptic

space contains

|Q−|p = (2n−1 − 1)(2n + 1) (8.8)

points and there are

|W |Q− = |Q−|p + 1 = (2n−1 − 1)(2n + 1) + 1 (8.9)

copies of them in W(2n − 1, 2). For both symplectic and hyperbolic polar spaces r = n,

whereas for the elliptic one r = n − 1. The smallest non-trivial symplectic polar space is
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the n = 2 one, W(3, 2), often referred to as the doily. It features 15 points (see Eq. 8.2)

and the same number of lines (that are also its generators, see Eq. 8.3), with three points

per line and three lines through a point; it is a self-dual 153-configuration and the only one

out of 245 342 such configurations that is triangle-free, being, in fact, isomorphic to the

generalized quadrangle of order two (GQ(2, 2)). This symplectic polar space features ten

Q+(3, 2)’s (by Eq. 8.6) and six Q−(3, 2)’s (by Eq. 8.9). A Q+(3, 2) contains nine points and

six lines forming a 3×3 grid, so it is also called a grid. A Q−(3, 2) features five pairwise non-

collinear points, hence it is an ovoid. A triple of mutually non-collinear points of W(3, 2) is

called a triad and a point collinear with all the three points of a triad is called a center of

the triad; W(3, 2) contains 60 unicentric and 20 tricentric triads.

The n-qubit observables we will be dealing with belong to the set

Sn = {G1 ⊗G2 ⊗ · · · ⊗Gn : G j ∈ {I, X,Y,Z}, j ∈ {1, 2, . . . , n}}\{In} (8.10)

where In ≡ I2 ⊗ . . . ⊗ I2, X,Y and Z are the Pauli matrices, I is the identity matrix and

‘⊗’ stands for the tensor product of matrices. Sn, whose elements are simply those of

the n-qubit Pauli group if the global phase is disregarded, features two kinds of observ-

ables, namely symmetric (i.e., observables featuring an even number of Y ’s) and skew-

symmetric; the number of symmetric observables is (2n−1 + 1)(2n − 1). We shall further

employ a finer classification where an observable having n−1, n−2, n−3, . . . I’s will be, re-

spectively, of type A, B, C, . . . ; also, whenever it is clear from the context, G1⊗G2⊗· · ·⊗Gn

will be short-handed to G1G2 · · ·Gn.

For a particular value of n, the 4n − 1 elements of Sn can be bijectively identified with the

same number of points of W(2n − 1, 2) in such a way that the images of two commuting

elements lie on the same line of this polar space, and generators of W(2n−1, 2) correspond

to maximal sets of mutually commuting elements. If we take the symplectic form defined

by Eq. 8.1, then this bijection acquires the form

G j ↔ (x j, x j+n), j ∈ {1, 2, . . . , n}, (8.11)

assuming that

I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), and Z ↔ (1, 0). (8.12)

Employing the above-introduced bijection (for more details see, e. g., [LS17]), it can be

shown that given an observable O, the set of symmetric observables commuting with O

together with the set of skew-symmetric observables not commuting with O will lie on a

certain non-degenerate quadric of W(2n−1, 2), this quadric being hyperbolic (resp. elliptic)

if O is symmetric (resp. skew-symmetric). We can express this important property by

making, whenever appropriate, this associated observable explicit in a subscript, Q±(O)(2n−
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1, 2), note that there exists a particular hyperbolic quadric associated with I:

Q+(I)(2n − 1, 2) := {(x1, x2, . . . , x2n) ∈ W(2n − 1, 2) | x1xn+1 + x2xn+2+

. . . + xnx2n = 0}.
(8.13)

This definition is a qualitative one, but it can also be fully formalized, as it was in Chap.

7. Another way to describe Q±(O)(2n − 1, 2) can be given as such: for a single qubit,

Q(O)(x1, x2) = x1x2 + ix2
1 + jx2

2 where O → (i, j) is given in Eq. 8.12. With this, we de-

fine for any operator O1O2 . . .On

Q±(O1O2...On)(2n − 1, 2) = {(x1, x2, . . . , x2n) ∈ W(2n − 1, 2) | Q(O1)(x1, xn+1)+

Q(O2)(x2, xn+2) + . . . + Q(On)(xn, x2n) = 0}.

Given a point-line incidence geometry Γ(P, L), a geometric hyperplane of Γ(P, L) is a sub-

set of its point set such that a line of the geometry is either fully contained in the subset

or has with it just a single point in common. The Veldkamp space V(Γ) of Γ(P, L) is the

space in which [BC13]:

(i) a point is a geometric hyperplane of Γ and

(ii) a line is the collection, denoted H′H′′, of all geometric hyperplanes H of Γ such that

H′ ∩ H′′ = H′ ∩ H = H′′ ∩ H or H = H′,H′′, where H′ and H′′ are distinct points of

V(Γ).

For a Γ(P, L) with three points on a line, all Veldkamp lines are of the form {H′,H′′,H′∆H′′}

where H′∆H′′ is the complement of symmetric difference of H′ and H′′, i.e. they form a

vector space over F2. As demonstrated in [VL10], V(W(2n − 1, 2)) � PG(2n, 2). Its points

are both hyperbolic and elliptic quadrics of W(2n − 1, 2), as well as its perpsets. Given a

point x of W(2n − 1, 2), the perpset Q̂(x)(2n − 1, 2) of x consists of all the points collinear

with it,

Q̂(x)(2n − 1, 2) := {y ∈ W(2n − 1, 2) | σ(x, y) = 0};

the point x being referred to as the nucleus of Q̂(x)(2n − 1, 2).

Example 9: [Hol19b] Let us take the Veldkamp space of the Mermin-Peres square as an

example. First of all, some of the hyperplanes are highlighted in red in Fig. 8.1.

With this, an example of line of the corresponding Veldkamp space is shown in Fig. 8.2.

As stated previously, this set is indeed of the shape {H′,H′′,H′∆H′′}.

We shall briefly recall basic properties of the Veldkamp space of the doily, V(W(3, 2)) ≃

PG(4, 2), whose in-depth description can be found in [SPPH07]. The 31 points of

V(W(3, 2)) comprise 15 perpsets, ten grids and six ovoids – as also illustrated in Fig.

8.3 that depicts the three kinds of geometric hyperplanes of W(3, 2). The 15 points of

the doily are represented by small circles and its 15 lines are illustrated by the straight
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X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

Figure 8.1: Representation of some hyperplanes of the Mermin-Peres square.


X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

,

X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X

,

X ⊗ Y Y ⊗ X Z ⊗ Z

I ⊗ Y Y ⊗ I Y ⊗ Y

X ⊗ I I ⊗ X X ⊗ X


Figure 8.2: One line of the Veldkamp space of the Mermin-Peres square.

Figure 8.3: The three kinds of geometric hyperplanes of W(3, 2)

segments as well as by the segments of circles; note that not every intersection of two

segments counts for a point of the doily. The upper panel shows grids (red bullets), the

middle panel perpsets (yellow bullets) and the bottom panel ovoids (blue bullets). Each

picture – except that located in the bottom right-hand corner – stands for five different

hyperplanes, the four other being obtained from it by its successive rotations through 72

degrees around the center of the pentagon. The 155 lines of V(W(3, 2)) split into five

distinct types as summarized in Tab. 8.1 which is an overview of the properties of the five

different types of lines of V(W(3, 2)) in terms of the core (i.e., the set of points common
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to all the three hyperplanes forming the line) and the types of geometric hyperplanes fea-

tured by a generic line of a given type. The last column gives the total number of lines per

each type. This is depicted in Fig. 8.4, an illustrative portrayal of representatives (rows) of

the five(numbered consecutively from top to bottom) different types of lines ofV(W(3, 2)),

each being uniquely determined by the properties of its core (black bullets). (Tab. 8.1, as

well as Fig. 8.3 and Fig. 8.4, were taken from [SLPP09].)

Type Core Perps Ovoids Grids #
I Two Secant Lines 1 0 2 45
II Single Line 3 0 0 15
III Tricentric Triad 3 0 0 20
IV Unicentric Triad 1 1 1 60
V Single Point 1 2 0 15

Table 8.1: Properties of the lines types of V(W(3, 2)) in terms of the core

Figure 8.4: Representatives of the lines types of V(W(3, 2))

In what follows we will mainly be focused on W(2N − 3, 2)’s that are located in W(2n− 1, 2).

These are, in general, of two different kinds [VL10]. A W(2N − 3, 2) of the first kind, to be

called linear, is isomorphic to the intersection of two perpsets with non-collinear nuclei
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and their number in W(2n − 1, 2) is

|W |Wl =
1
3

4n−1(4n − 1). (8.14)

A W(2n − 3, 2) of the second kind, to be called quadratic, is isomorphic to the intersection

of a hyperbolic quadric and an elliptic quadric and W(2n − 1, 2) features

|W |Wq = 4n−1(4n − 1) (8.15)

of them. By way of example, in W(3, 2) a linear (resp. quadratic) W(1, 2) corresponds to a

tricentric (resp. unicentric) triad.

In the sequel, when referring to W(2n − 1, 2) and its subspaces we will always have in

mind the W(2n− 1, 2) and its subspaces whose points are labelled by n-qubit observables

from the set Sn as expressed by Eqs. (8.11) and (8.12). Moreover, a linear subspace of

such W(2n − 1, 2) will be called positive or negative according as the (ordinary) product of

the observables located in it is +In or −In, respectively. Let us illustrate this point taking

again the n = 2 case. Up to isomorphism, there is just one type of the two-qubit doily.

Its six observables of type A are IX, XI, IY, YI, IZ, and ZI and its nine ones of type B

are XX, XY, XZ, YX, YY, YZ, ZX, ZY and ZZ, the latter lying on a particular hyperbolic

quadric, Q+(YY)(3, 2). Among the 15 lines only the three lines {XX,YY,ZZ}, {XY,YZ,ZX} and

{XZ,YX,ZY} are negative, forming also one system of generators of Q+(YY)(3, 2).

8.3/ W(3, 2) AND ITS TWO-QUBIT W(1, 2)’S

This is a rather trivial case. As already mentioned in Sec. 2, the doily contains three

negative lines, of the same (B − B − B) type. Among its W(1, 2)’s, we find two types

of linear ones and three types of quadratic ones, whose properties are summarized in

Tab. 8.2 which gives a classification of W(1, 2)’s living in W(3, 2). Column one (T ) shows

the type, columns two and three (OA and OB) indicate the number of observables of

corresponding types, and columns four (Wl) and five (Wq) yield, respectively, the number

of ‘linear’ and ‘quadratic’ W(1, 2)’s of a given type.

T OA OB Wl Wq

1 0 3 − 6
2 1 2 − 36
3 1 2 18 −

4 2 1 − 18
5 3 0 2 −

Table 8.2: Classification of W(1, 2)’s living in W(3, 2)
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It is worth noticing that the six quadratic W(1, 2)’s (i.e., unicentric triads) of Type 1 lie on

the distinguished quadric Q+(YY)(3, 2), being in fact its six ovoids.

8.4/ W(5, 2) AND ITS THREE-QUBIT DOILIES

The space W(5, 2) contains 63 points, 315 lines and 135 generators, the latter being all

Fano planes. Among the 63 canonical three-qubit observables associated to the points,

nine are of type A, 27 are of type B and 27 are of type C. Through an observable of

type C there pass six negative lines, all being of type C − C − B; the total number of

negative lines of this type thus is 27×6
2 = 81. Through an observable of type B there pass

four negative lines. Of them, three are of the above-mentioned type and the fourth one is

of type B − B − B; the total number of negative lines of the latter type is 27×1
3 = 9. As no

negative line features an observable of type A, one finds that the W(5, 2) accommodates

as many as (81 + 9 =) 90 negative lines.

T C− OA OB OC Dl Dq

1 7 0 7 8 − 81
2 7 0 9 6 27 −

3 6 1 5 9 − 108
4 5 2 5 8 162 −

5 5 2 7 6 − 162
6 4 3 5 7 − 324
7 3 0 9 6 9 −

8 3 0 15 0 − 36
9 3 2 7 6 − 216

10 3 2 9 4 81 −

11 3 4 5 6 54 −

12 3 4 7 4 − 81
13 3 6 9 0 3 −

Table 8.3: Classification of doilies living in W(5, 2)

When we pass to W(3, 2)’s, we find a (much) richer structure, because alongside the types

of observables we can employ one more parameter, namely the number of negative lines

a given W(3, 2) contains. In fact, we find that the 336 linear doilies (see Eq. 8.14) fall

into six different types and the 1008 quadratic ones (see Eq. 8.15) into seven types; we

note in passing that Type 9 splits further into two subtypes depending on whether the

two observables of type A do (Type 9A, 162 members) or do not (Type 9B, 54 members)

commute. This classification is summarized in Tab. 8.3 which gives a classification of

doilies living in W(5, 2). Column one (T ) shows the type, column two (C−) the number

of negative lines in a doily of the given type, columns three to fiven(OA to OC) indicate

the number of observables of corresponding types, and columns six (Dl) and seven (Dq)
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yield, respectively, the number of ‘linear’ and ‘quadratic’ doilies of a given type. It is also

pictorially illustrated in Fig. 8.5, a depiction of representatives – numbered consecutively

from left to right, top to bottom – of the 13 different types of three-qubit doilies; Type 1

is top left, Type 13 bottom middle; we also distinguish between Type 9A (3rd row, right)

and Type 9B (4th row, left). The three different types of observables are distinguished

by different colors and the negative lines are drawn heavy. It is worth noticing here that

there are two different types of doilies (Type 3 and Type 6) exhibiting an even number of

negative lines.

The 27 observables of type B lie on an elliptic quadric of W(5, 2), which can be defined as

follows:

Q−(YYY)(5, 2) := x2
1 + x1x4 + x2

4 + x2
2 + x2x5 + x2

5 + x2
3 + x3x6 + x2

6 = 0.

Here, we took a coordinate basis of W(5, 2) in which the symplectic form σ(x, y) is given

by Eq. 8.1,

σ(x, y) = (x1y4 − x4y1) + (x2y5 − x5y2) + (x3y6 − x6y3),

so that the correspondence between the 63 three-qubit observables (see Eq. 8.10)

S3 = {G1 ⊗G2 ⊗G3 : G j ∈ {I, X,Y,Z}, j ∈ {1, 2, 3}}\I3

and the 63 points of W(5, 2) is of the form (see Eq. 8.11)

G j ↔ (x j, x j+3), j ∈ {1, 2, 3},

taking also into account Eq. 8.12.

This special quadric Q−(YYY)(5, 2), like any non-degenerate quadric, is a geometric hyper-

plane of W(5, 2). As a doily is also a subgeometry of W(5, 2), it either lies fully in Q−(YYY)(5, 2)

(Type 8), or shares with Q−(YYY)(5, 2) a set of points that form a geometric hyperplane; an

ovoid (Types 3, 4, 6 and 11), a perpset (Types 1, 5, 9 and 12) and a grid (Types 2, 7, 10

and 13). One also observes that no quadratic doily shares a grid with Q−(YYY)(5, 2).

In addition to the distinguished elliptic quadric, there are also three distinguished hyper-

bolic quadrics in W(5, 2), namely: the quadric whose 35 observables feature either two

X′s or no X,

Q+(ZZZ)(5, 2) := x2
4 + x2

5 + x2
6 + x1x4 + x2x5 + x3x6 = 0,

the one whose 35 observables feature either two Y ′s or no Y (see Eq. 8.13),

Q+(III)(5, 2) := x1x4 + x2x5 + x3x6 = 0,
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Figure 8.5: Representatives of the types of three-qubit doilies

and the one whose 35 observables feature either two Z′s or no Z,

Q+(XXX)(5, 2) := x2
1 + x2

2 + x2
3 + x1x4 + x2x5 + x3x6 = 0.

Accordingly, there are three distinguished doilies of Type 8, namely the ones the quadric
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Figure 8.6: Three-qubit doily decomposition into three single-qubit residuals

Q−(YYY)(5, 2) shares with these three hyperbolic quadrics.

Take the two-qubit doily. Add formally to each observable, at the same position, the same

mark from the set {X,Y,Z}. Pick up a geometric hyperplane in this three-qubit labeled

doily, and replace by I the added mark in each observable that belongs to this geometric

hyperplane. One obviously gets a three-qubit doily. Now, there are 31 geometric hyper-

planes in the doily, three possibilities (X,Y,Z) to pick up a mark, and three possibilities

(left, middle, right) where to insert the mark; so there will be 31 × 3 × 3 = 279 doilies cre-

ated this way. In particular, out of the 15 × 9 = 135 doilies ‘induced’ by perpsets, 81 are of

Type 10 and 54 of Type 11; out of the 10 × 9 = 90 doilies ‘generated’ by grids, 81 are of

Type 12 and 9 of Type 8; finally, the 6 × 9 = 54 doilies stemming from ovoids are all of the

same type 9B. So, if we look at Tab. 8.3, all doilies of Types 1 to 7, 27 doilies of type 8

and all doilies of type 9A can be regarded as ‘genuine’ three-qubit guys, 9 doilies of type

8 that originate from grids (henceforth referred to as Type 8′) and all doilies of types 9B to

13 can be viewed as ‘built from the two-qubit guy’; with Type 13 doilies being even more

two-qubit-like.

This stratification of three-qubit doilies can also be spotted in a different way. Take a

representative doily of a particular type, for example that of Type 3 depicted in Fig. 8.6,

top. From its three-qubit labels, keep first only the left mark (bottom left figure), then the

middle mark (bottom middle figure) and, finally, the right mark (bottom right figure). In

each of these three ‘residual’ doilies it is easy to see that if you take the points featuring

a given non-trivial mark (i.e., X, Y or Z) together with the points featuring I, these always

form a geometric hyperplane, and the whole set form a Veldkamp line of the doily where
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T 2cl le ttr utr pt ov ps gr fl
1 1 − − − 2 − − − −

2 − 3 − − − − − − −

3 − − 1 1 1 − − − −

4 − 1 2 − − − − − −

5 1 − − 2 − − − − −

6 1 − 1 1 − − − − −

7 − 3 − − − − − − −

8 3 − − − − − − − −

9A 1 − − 2 − − − − −

8′ − − 2 − − − − 1 −

9B − − 2 − − 1 − − −

10 − − 2 − − − 1 − −

11 − − 2 − − − 1 − −

12 − − 2 − − − − 1 −

13 − − 2 − − − − − 1

Table 8.4: A refined classification of doilies living in W(5, 2)

the points featuring I represent its core! Fig. 8.6 depicts a formal decomposition of a

three-qubit doily (top) into three ‘single-qubit residuals’ (bottom). In each doily of the bot-

tom row, the three geometric hyperplanes forming a Veldkamp line are distinguished by

different colors, with their common points being drawn black; also, the nuclei of perpsets

are represented by double circles. Employing Tab. 8.1 we readily see that this Veldkamp

line is of type V (the core is a single point) for the left residual doily, type III (the core is

a tricentric triad) for the middle doily and of type IV (the core is a unicentric triad) for the

right one. To account this way for the 13 types of three-qubit doilies, we also need the

concept of a trivial Veldkamp line of the doily, i.e. a line consisting of a geometric hyper-

plane counted twice and the full doily, which exactly accounts for those doilies ‘generated’

by the two-qubit doily! This classification is summarized in Tab. 8.4 giving a refined clas-

sification of doilies living in W(5, 2). We use the following abbreviations for the cores of

Veldkamp lines: 2cl – two concurrent lines, le – line, ttr – tricentric triad, utr – unicentric

triad, pt – point, ov – ovoid, ps – perpset, gr – grid and f l stands for the full doily. Here,

columns two to six give the number of ordinary Veldkamp lines of a given type, columns

seven to nine show the same for trivial Veldkamp lines and the last column corresponds

to the degenerate case when all the points of a residual doily bear the label I. Note that all

doilies stemming from the two-qubit doily (i.e., Types 8′ to 13) feature ordinary Veldkamp

lines of the same type.

Using our Magma program presented in Chap. 7, we have also found out a very interest-

ing property that given a doily and any geometric hyperplane in it, there are three other

doilies having the same geometric hyperplane. Fig. 8.7 serves as a visualization of this

fact when the common geometric hyperplane is an ovoid (bold-faced). The top doily is of
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Figure 8.7: Four different doilies sharing an ovoid

Type 11, the bottom one of Type 8, and both the left and right doilies are of Type 3. The

four doilies sharing a geometric hyperplane, however, do not stand on the same footing.

This is quite easy to spot from our example depicted in Fig. 8.7. A point of the doily is

collinear with three distinct points of an ovoid, the three points forming a unicentric triad.

Let us pick up such a triad, say {ZYI, XYI,YYI} and look for its centers in each of the four

doilies. These are IYI (top doily), IIX (left doily), IIY (right doily) and IYZ(bottom one).

We see that the last three observables are mutually anticommuting, whereas the first ob-

servable commutes with each of them. This property is found to hold for each of
(
5
3

)
= 10

triads contained in an ovoid. Hence, the top doily of Fig. 8.7 has indeed a different footing

than the remaining three. A similar 3 + 1 split up is also observed in any quadruple of

doilies having a grid in common because a point of the doily is also collinear with three

points of a grid that form a unicentric triad. However, when the shared hyperplane is a

perpset, one gets a different, namely 2 + 2 split, because in this case the corresponding

triple of points forms a tricentric triad.

Among the 13 different types of three-qubit doilies, there is one type, namely Type 3,

which has two remarkable properties. The first property is that there is one point (to be

called a deep point) such that all three lines passing through it are negative. Let’s take

a representative doily of such a type shown in Fig. 8.5, 1st row right. The deep point is

ZIZ. Then one sees that there are just two points (to be called zero-points) such that

neither of them lies on a negative line; one is IIY and the other is XIZ. These two points

and the deep point form in the doily a tricentric triad, hence a copy of ‘linear’ W(1, 2)! The
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second property is related to the fact that through each observable of type B there pass

four negative lines. Three of them are such that each features one observable of type B

and two observables of type C, whereas the remaining one consists of all observables of

type B. Written vertically, the four negative lines passing through our deep point ZIZ are:

ZIZ ZIZ ZIZ ZIZ

XXX XYX XZX XIX

YXY YYY YZY YIY

We see that the three lines that are located in the doily are of the same type, viz. B−C−C.

If we include also the fourth negative line, viz. the B − B − B one, we get what we can call

a ‘doily with a tail.’ Taking into account the above-mentioned four-doilies-per-hyperplane

property, we see that there are altogether 12 doilies, four per each observable, having the

same tail and all being of Type 3.

8.5/ W(7, 2) AND ITS FOUR-QUBIT W(5, 2)

The space W(7, 2) possesses 255 points, 5355 lines, 11475 planes and 2295 generators,

the latter being all PG(3, 2)’s. Among the 255 canonical four-qubit observables associated

to the points, 12 are of type A, 54 of type B, 108 of type C and 81 of type D. Through

an observable of type D there pass: four negative lines of type D − D − D, totaling to
81×4

3 = 108; 12 negative lines of type D − D − B, totaling to 81×12
2 = 486; and 12 negative

lines of type D − C − C, totaling to 81 × 12 = 972. Through an observable of type C there

pass, apart from the above-mentioned lines of type D − C − C, six negative lines of type

C − C − B, totaling to 108×6
2 = 324. Through an observable of type B there passes, apart

from the already discussed two types of lines, a single negative line of type B − B − B,

the total number of such lines being 54×1
3 = 18. Since no negative line can contain an

observable of type A, the four-qubit W(7, 2) thus exhibits five distinct types of negative

lines whose total number is (108 + 486 + 972 + 324 + 18 =) 1908.

When it comes to W(5, 2)’s, we find 11 types among their 5440 linear members and as

many as 18 types among their 16320 quadratic cousins − as summarized in Tab. 8.5

which gives a classification of W(5, 2)’s living in W(7, 2). Column one (T ) shows the type,

column two (C−) the number of negative lines in a W(5, 2) of the given type, columns three

to six (OA to OD) indicate the number of observables featuring three I’s, two I’s, one I or

no I, respectively, columns seven (Wl) and eight (Wq) yield, respectively, the number of

‘linear’ and ‘quadratic’ W(5, 2)’s of a given type, the last but one column depicts the type

of intersection of a representative W(5, 2) with the distinguished hyperbolic quadric and

the last column indicates the type of geometric hyperplane featuring the trivial mark (I)

for composite W(5, 2)’s. It represents no difficulty to check that 54 observables of type B
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T C− OA OB OC OD Wl Wq Int GH
1 130 3 9 33 18 108 − ell − − −

2 126 0 24 0 39 − 108 full − − −

3 126 1 13 27 22 − 1944 hyp − − −

4 126 2 10 30 21 − 1620 perp − − −

5 122 1 15 27 20 972 − hyp − − −

6 122 2 10 30 21 − 648 perp − − −

7 118 0 16 32 15 − 324 perp − − −

8 118 3 9 33 18 648 − ell − − −

9 118 3 11 25 24 − 1296 hyp − − −

10 114 1 15 27 20 324 − hyp − − −

11 114 1 17 27 18 − 216 hyp − − −

12 114 3 13 25 22 1944 − hyp − − −

13 114 4 12 28 19 − 1944 perp − − −

14 110 3 15 25 20 − 1944 hyp − − −

15 110 5 11 23 24 648 − hyp − − −

16 106 5 13 23 22 − 1944 hyp − − −

17 102 1 21 27 14 − 648 hyp − − −

18 102 2 18 30 13 − 324 perp − − −

19 102 3 15 25 20 − 648 hyp − − −

20 102 4 12 28 19 − 1944 perp − − −

21 90 0 36 0 27 − 12 full ell: O = YYY
22 90 2 22 30 9 − 108 perp hyp: all 9 O’s featuring two Y ’s
23 90 3 9 33 18 36 − ell − − −

24 90 3 21 25 14 324 − hyp perp: all 27 O’s of type C
25 90 4 16 28 15 − 324 perp ell: all 27 O’s featuring one Y
26 90 5 15 31 12 324 − ell perp: all 27 O’s of type B
27 90 6 18 26 13 − 324 perp hyp: 26 O’s having no Y + III
28 90 7 17 21 18 108 − hyp perp: all 9 O’s of type A
29 90 9 27 27 0 4 − ell full W(5, 2)

Table 8.5: Classification of W(5, 2)’s living in W(7, 2)

and 81 ones of type D lie on a particular hyperbolic quadric in W(7, 2), to be referred to as

the distinguished hyperbolic quadric Q+(YYYY)(7, 2), which is also a geometric hyperplane

in the latter space. A W(5, 2) either lies fully in this quadric (Types 2 and 21) or shares

with it a set of points that forms a geometric hyperplane. Hence, the sum of OB and OD

in each row of Tab. 8.5 must be one of the following numbers: 27 (when the hyperplane

of W(5, 2) is an elliptic quadric), 31 (a perpset) and/or 35 (a hyperbolic quadric); for the

reader’s convenience, the type of such geometric hyperplane is explicitly listed in column

9 of Tab. 8.5. One sees that no linear W(5, 2) shares with Q+(YYYY)(7, 2) a perpset and no

quadratic W(5, 2) cuts this distinguished quadric in an elliptic quadric. Comparing Tab. 8.5

with Tab. 8.3 one readily discerns that whereas W(3, 2)’s in W(5, 2) are endowed with both

an even and odd number of negative lines, for W(5, 2)’s in W(7, 2) this number is always

even; in addition, the difference in C− for any two distinct types of four-qubit W(5, 2)’s is a



8.5. W(7, 2) AND ITS FOUR-QUBIT W(5, 2) 121

multiple of four.

Let us have a closer look at W(5, 2)’s featuring 90 (i.e., the smallest possible number of)

negative lines. We can easily show that almost all of them originate from the three-qubit

W(5, 2). First, by adding I to each three-qubit observable at the same position we get

the four trivial four-qubit W(5, 2)’s of Type 29. Next, adding to each observable at the

same position a mark from the set {X,Y,Z}, picking up a geometric hyperplane in this

four-qubit labeled W(5, 2) and replacing by I the added mark of each observable in the

geometric hyperplane one gets a four-qubit W(5, 2) with 90 negative lines. Now, there

are 28 (# of elliptic quadrics) + 36 (# of hyperbolic quadrics) + 63 (# of perpsets) = 127

geometric hyperplanes in the W(5, 2), three possibilities (X,Y,Z) to pick up a mark, and

four possibilities (left, middle-left, middle-right, right) where to insert the mark. So, there

will be 127 × 3 × 4 = 1524 four-qubit W(5, 2)’s created this way, which only falls short by

36 the total number of W(5, 2)’s endowed with 90 negative lines (the four guys of Type 29

being, of course, disregarded). A concise summary is given in the last column of Tab. 8.5,

where the type of geometric hyperplane is further specified by the character/type of the

associated (three-qubit) observable. One observes that Type 23 is the only irreducible

type of W(5, 2)’s having 90 negative lines.

We shall illustrate this process by a couple of examples. Let us start with the perpset

of the three-qubit W(5, 2) whose nucleus is an observable of type A, say XII. Out of 31

observables commuting with this observable there are 7 of type A (XII, IXI, IIX, IYI,

IIY, IZI and IIZ), 15 of type B (IXX, IXY, IXZ, XXI, XIX, IYX, IYY, IYZ, XYI, XIY, IZX,

IZY, IZZ, XZI, and XIZ) and 9 of type C (XXX, XXY, XXZ, XYX, XYY, XYZ, XZX, XZY,

and XZZ). Hence, out of 32 observables off the perp, there will be 9 − 7 = 2 of type A,

27 − 15 = 12 of type B and 27 − 9 = 18 of type C:

Q̂(XII) OA OB OC

on 7 15 9

off 2 12 18

.

Next, each observable of the perpset acquires a trivial mark I and hence goes into the

four-qubit observable of the same type. However, an observable lying off the perpset gets

a non-trivial label X, Y or Z and so yields the four-qubit observable of the subsequent type;

that is, O(3)
A → O(4)

B , O(3)
B → O(4)

C and O(3)
C → O(4)

D . Hence, in our case we get:

(Q̂(XII)) OA OB OC OD

(on – type intact) 7 15 9 0

(off – type shifted) 0 2 12 18

Total 7 17 21 18

.

Comparing with Tab. 8.5 we see that this is a four-qubit W(5, 2) of Type 28.
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As the second example we shall take the case when the geometric hyperplane of W(5, 2)

is an elliptic quadric generated by an antisymmetric observable of type B, say YXI. This

quadric, Q−(YXI)(5, 2), consists of all symmetric observables that commute with YXI and

all antisymmetric observables that anticommute with YXI. In particular, it contains 4

observables of type A (IXI, IIX, IIZ and IYI), 11 observables of type B (XZI, ZZI, YIY,

IXX, IXZ, YZI, IYX, IYZ, XIY, ZIY and IZY) and 12 observables of type C (XZX, ZZX,

XZZ, ZZZ, YXY, XYY, ZYY, YZX, YZZ, XXY, ZXY and YYY). So, out of 36 observables off

the quadric, there will be 5, 16 and 15 of type A, B and C, respectively. In a succinct form,

Q−(YXI)(5, 2) OA OB OC

on 4 11 12

off 5 16 15

.

From this it follows that the corresponding four-qubit W(5, 2) is of Type 25:

(Q−(YXI)(5, 2)) OA OB OC OD

(on – type intact) 4 11 12 0

(off – type shifted) 0 5 16 15

Total 4 16 28 15

.

8.6/ CONCLUSION

We have introduced a remarkable observable-based taxonomy of subspaces of W(2n −

1, 2), 2 ≤ n ≤ 4, whose rank is just one less than that of the ambient space. Alongside the

distribution of various types of observables, an important parameter of the classification

was the number of negative lines contained in a subspace. As already mentioned in the

introduction, this latter parameter is essential in checking whether a given finite geometric

configuration is contextual or not. For example, our preliminary analysis shows that all

three-qubit and four-qubit doilies are, like their two-qubit sibling, contextual. As a future

work we plan to address this question in more detail, employing also the degree of con-

textuality, for a variety of other symplectic subspaces. However, when approaching this

way subspaces of higher rank, it would be natural to include as parameters the number of

negative linear subspaces of every viable dimension from 1 to n−2, i.e. consider negative

lines, negative planes, . . . , negative generators; so, already in the case of n = 4 we can

add one more parameter, the number of negative planes a four-qubit W(5, 2) is endowed

with, to get an interesting refinement of our Tab. 8.5. As the three-qubit W(5, 2) features 54

negative planes [SHJ20], each composite four-qubit W(5, 2) must have the same number

of negative planes; in connection with this fact it would be interesting to check whether

also each irreducible four-qubit W(5, 2) having 90 lines (Type 23) enjoys this property.

Another interesting extension/variation of our taxonomy would be to take into account
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the number of negative lines passing through a point of the subspace. Let us call this

number the order of a point and for each subspace W(2s− 1, 2) define the following string

of parameters [p0, p1, p2, . . . , p2s−1], where pk, 0 ≤ k ≤ 2s − 1, stands for the number of

points of order k the subspace contains. Applying this to three-qubit doilies (s = 2), we

find the following five patterns (as readily discerned from Fig. 8.3): [0, 9, 6, 0] (Types 1 and

2), [2, 9, 3, 1] (Type 3), [5, 5, 5, 0] (Types 4 and 5), [6, 6, 3, 0] (Type 6) and [6, 9, 0, 0] (Types

7 to 13).

A slightly different possibility of employing our strategy is to analyse other distinguished

subgeometries of W(2n − 1, 2) like, for example, the split Cayley hexagon of order two

[PSVM01]. This generalized polygon can be embedded into W(5, 2), and in two different

ways at that [Coo10], called classical and skew. We have already discerned two distinct

kinds of the former, and as many as 13 different types of the latter. Yet, a full understand-

ing of the case requires a more rigorous computer-assisted approach and will, therefore,

be treated in a future work.
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GENERAL CONCLUSION

Program verification is a key element for assessing that programs behave in accordance

with some formalized requirements. So far, quantum program verification is at its very

early stages. In this thesis, I have explored ways of specifying and evaluating two quan-

tum properties, entanglement and contextuality, that prepare their formalization in a quan-

tum program verification tool.

At first, a quantum circuit simulator has been developed in SageMath, allowing us to

evaluate quantum state properties at any intermediate execution step, in a similar way to

verification method known as runtime assertion checking. This prototype also offers the

nice feature of optional choice between floating-point and exact computation, for either

faster or more accurate results. With this simulator I presented two example algorithms –

Deutsch’s algorithm and Deutsch-Jozsa’s algorithm (Chap. 3). Deutsch’s algorithm was

validated using exhaustive testing – a method where every possible input is tested – and

Deutsch-Jozsa’s algorithm was validated up to n = 5 qubits using bounded exhaustive

testing. Both of these methods are elementary ways to validate software, only available

in some simple cases. This same simulator was used in order to study the variation of

entanglement in Grover’s algorithm and the QFT using Mermin’s polynomials (Chap. 4,

[dJH+20, dJH+21]). In this work, we concluded that Mermin’s polynomials are a suitable

tool to dynamically measure entanglement at each step of a quantum algorithm. Fur-

thermore, entanglement has an interesting behavior in Grover’s algorithm: it increases

up to a middle point, and then decreases until the end of the algorithm. This property

could be used to check the validity of an implementation of Grover’s algorithm for exam-

ple. The behavior of the QFT in that regard is less regular, but we draw a comparison

between the measure of entanglement using Mermin’s polynomials and using the Cayley

hyperdeterminant, showing some similarities, but also some differences. This work was

then transposed with Grâce Amouzou to IBM’s Qiskit library (Chap. 5) in order to assess

whether these results could be transposed to NISQ (Noisy Intermediate-Scale Quantum)

processors, resulting in an article on the subject by G. Amouzou, J. Boffelli, H. Jaffali,

K. Atchonouglo and F. Holweck [ABJ+20]. At this time, the noise in IBM’s quantum pro-

cessors is still too important for obtaining results corresponding to the simulated ones,

but the execution on their simulator yielded the same results as ours. The study of the

QFT validated that some gates would affect entanglement, and others wouldn’t. This gate

property could be used in specification and validation.

Motivated by previous works by two of my thesis supervisors, we then tackled contextu-

ality from the point of view of finite geometry. Jessy Colonval and I introduced ourselves

to the field by implementing some known geometries generation algorithms in Magma

(Chap. 6, [Cd19]). We noticed that the mathematical community still lacked some im-

portant coding practices, resulting in imprecise results that we outlined. This work was
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a warm-up in finite geometries generation with Magma, followed up by the generation of

finite geometries said to be quantum for their link with Mermin-Peres geometries. These

geometries were thoroughly studied in Chap. 7 and 8. We first worked on families of

geometries, assessing if their members were contextual geometries or not (Chap. 7,

[dHGM21a, dHGM21b]). We found out that, for n ∈ [2..5] qubits, the lines of W(2n − 1, 2)

– the symplectic space of n qubits, a space encoding the commutation relations in the n-

qubits Pauli group–, their restrictions to hyperbolic quadrics and their restrictions to elliptic

quadrics are all contextual, but W(2n− 1, 2)’s generators and W(2n− 1, 2)’s lines restricted

to the perpsets are never contextual. Then, we studied the structure of W(2n− 1, 2), using

a newly defined signature for the geometries, being made up of the number of negative

lines and the number of observables with i identities with i ∈ [0..n − 1] for each geom-

etry (Chap. 8, [SdHG21]). This study is complemented by correspondences between

W(2n− 1, 2), W(2(n− 1)− 1, 2) and W(2(n− 2)− 1, 2) increasing geometries of a given num-

ber of qubits with strategically placed operators to obtain geometries of the size above,

and is specifically performed for geometries using 2 to 5 qubits observables. These stud-

ies aim at better understanding contextuality in order to find remarkable properties that

could be used for specifying contextuality in quantum programs, but they are only a first

step on a long road.

PERSPECTIVES

Many of the tackled subjects are begging for a follow-up. In particular, Chap. 4 – evalu-

ation of entanglement and non-locality in Grover’s algorithm and the QFT with Mermin’s

polynomials – led us to a work in progress on formalizing Mermin’s polynomials and the

QFT in the proof assistant Coq1. An example of the tasks from this work is given in

Appendix D where I show some Coq code proving that Mermin’s polynomials are Her-

mitian operators. Once finished, this work could be extended by a formal proof of the

growing-then-falling aspect of entanglement during Grover’s algorithm. The QFT seems

harder to study on that regard because of its irregular behavior, but Grover’s algorithm is a

good candidate. Furthermore, since our study, Grover’s algorithm was implemented and

its correctness as of finding the searched element was proven in SQIRE (a Coq library

for quantum circuits formalization), which means we could heavily rely on this work, and

focus on Mermin’s polynomials implementation. This could also be tackled on another

formal verification software, such as Why3 where automation may help speed up the pro-

cess. In particular, a recent Why3 library called Qbricks [CBB+21] would fit in very well in

this project.

We also started to formalize quantum geometries in Why3, with the aim of proving general

1https://coq.inria.fr/

https://coq.inria.fr/
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properties for all numbers of qubits. This work is also in progress, and should be finished.

Additionally, the space containing the geometries has a very rich structure, that could be

further explored. We keep in mind that, even though we studied quantum contextuality

through these geometries, contextuality can also be highlighted in a more general way

by protocols, like those used in quantum games. This means that programs could be

studied under this aspect, allowing us eventually to specify them using contextuality. In

this case, studying the link between our approach of contextuality and protocols involving

contextuality may allow us to use our work in quantum geometries for quantum programs

specification.

Furthermore, our work gives rise to several conjectures, that we validated only for small

numbers n of qubits. This could be proven for all n, but if close enough of a formal

representation of the problem, this is also a place where formal proof softwares would

shine. An example of such conjecture is the fact that all W(2n−1, 2)’s lines and its quadrics

form contextual geometries for all numbers n of qubits.
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A

DEUTSCH-JOZSA ORACLE

This chapter gives a formula to quickly compute the matrix corresponding to the ora-

cle used in the Deutsch-Jozsa algorithm. This formula is followed by its proof, detailed

enough to be formalized in a proof language later on if need be.

A.1/ FORMULA

First of all, let’s introduce some notations :

• B = {0, 1},

• n ∈ N∗ is the number of bits for the input of the function

• I = [0..2n − 1] and I′ = [0..2n+1 − 1] are intervals that will be regularly used

f : I → B is the function for which we want to know if it is constant or balanced.

Definition 3: Deutsch-Jozsa oracle

The oracle U f =
(
ui, j

)
(i, j)∈I′2

∈ M2n+1(C) is defined as such : ∀(x, y) ∈ I ×B,U f (|x⟩⊗

|y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩.

With this definition, we can now introduce (Ci)i∈I ∈ M2(C)n, where the Ci are defined as

such:

∀i ∈ I,Ci =

 u2i,2i u2i,2i+1

u2i+1,2i u2i+1,2i+1

 .
And we’ll use {Ci} as the set of the coefficients of Ci.

Let’s recall that I =
(

1 0
0 1

)
and X =

(
0 1
1 0

)
.

Theorem 1 (Deutsch-Jozsa oracle formula): We can compute U f with the following

formula

∀x ∈ I,


f (x) = 0 =⇒ Ci = I

f (x) = 1 =⇒ Ci = X

∀(i, j) ∈ I′2,¬(∃k, ui, j ∈ {Ck}) =⇒ ui, j = 0

133
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Visually, U f =


C0 0

. . .

0 C2n−1

,
and we can summarize the formula as such: U f is a null matrix except on the diagonal

blocks where it can be either I or X depending if f (x) is equal to 0 or 1 respectively.

Yet another way to write this is to see that U f =
∑

i∈I ei ⊗Ci with ei = |i⟩ ⟨i|.

A.2/ PROOF

∀(x, y) ∈ I × B, |x⟩ ⊗ |y⟩ is the vector with 1 being its single entry at position 2x + y. This

implies that, given that U f |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |y ⊕ f (x)⟩, (ui,2x+y)i∈I′ is such a vector where the

1 is in position 2x + (y ⊕ f (x)).

We thus have u2x+(y⊕ f (x)),2x+y = 1 and ∀i ∈ I − {2x + (y ⊕ f (x))}, ui,2x+y = 0

From this, we deduce that there is only one ‘1’ per column: on the 2x + yth column, it is at

the 2x + (y ⊕ f (x))th line. Which yields the following result:

f (x) = 0 =⇒

U f (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0⟩

U f (|x⟩ ⊗ |1⟩) = |x⟩ ⊗ |1⟩
=⇒

u2x,2x = 1

u2x+1,2x+1 = 1
=⇒ Cx = I

and

f (x) = 1 =⇒

U f (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |1⟩)

U f (|x⟩ ⊗ |1⟩) = |x⟩ ⊗ |0⟩)
=⇒

u2x+1,2x = 1

u2x,2x+1 = 1
=⇒ Cx = X

A.3/ PROOF 2

A more calculation oriented proof is given below, using the Kronecker operator (δ j
i = 1 if

i = j and δ j
i = 0 otherwise).

As seen previously ∀(x, y) ∈ I × B, |x, y⟩ =
∑

k∈I′ δ
2x+y
k |k⟩. Given that U f =

∑
(i, j)∈I′2 ui, j |i⟩ ⟨ j|,

we get:
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U f (|x⟩ ⊗ |y⟩) =
∑

i, j,k∈I′
ui, jδ

2x+y
k |i⟩ ⟨ j|k⟩

=
∑
i, j∈I′

ui, jδ
2x+y
j |i⟩

=
∑
i∈I′

ui,2x+y |i⟩

Given that |x⟩ ⊗ |y ⊕ f (x)⟩) =
∑

k∈I′ δ
2x+(y⊕ f (x))
k |k⟩ and U f (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y ⊕ f (x)⟩), we have

∀(i, x) ∈ I′ × I, ui,2x+y = δ
2x+(y⊕ f (x))
i . Which results in

 f (x) = 0 =⇒ ∀k ∈ {2x, 2x + 1}, uk,2x+y = δ
2x+y
k

f (x) = 1 =⇒ ∀k ∈ {2x, 2x + 1}, uk,2x+y = δ
2x+(y⊕1)
k

Hence the result.

This second proof was added because it may be easier to formalize.





B

EXPLICIT STATES FOR GROVER’S
ALGORITHM

Proposition 4: [HJN16, Observation 1] The state |φk⟩ after k iterations of Grover’s algo-

rithm can be written as follows:

|φk⟩ = α̃k

∑
x∈S
|x⟩ + β̃k |+⟩

⊗n (B.1)

with α̃k =
cos

(
2k+1

2 θ
)

√
|S |

−
sin

(
2k+1

2 θ
)

√
N − |S |

and β̃k = 2n/2
sin

(
2k+1

2 θ
)

√
N − |S |

.

Proof. With |φ0⟩ = |+⟩
⊗n, we can write:

|φk⟩ = L
k |φ0⟩ =

ak
√
|S |

∑
x∈S
|x⟩ +

bk
√

N − |S |

∑
x<S
|x⟩

where L is the loop (oracle and diffusion operator) in Grover’s algorithm.

The oracle is a reflection about (
∑

x∈S |x⟩)⊥ =
∑

x<S |x⟩ and the diffusion operator is a re-

flection about |+⟩⊗n. The composition of these two symmetries is a rotation whose angle

θ is the double of the angle between
∑

x<S |x⟩ and |+⟩⊗n. So,

|+⟩⊗n = 1√
|S |

sin
(
θ
2

)∑
x∈S |x⟩ + 1√

N−|S |
cos

(
θ
2

)∑
x<S |x⟩

1√
N

(∑
x∈S |x⟩ +

∑
x<S |x⟩

)
= 1√

|S |
sin

(
θ
2

)∑
x∈S |x⟩ + 1√

N−|S |
cos

(
θ
2

)∑
x<S |x⟩

1√
N

∑
x∈S |x⟩ = 1√

|S |
sin

(
θ
2

)∑
x∈S |x⟩

1√
N
= 1√

|S |
sin

(
θ
2

)
sin

(
θ
2

)
=

√
|S |
N .

The fact that L is a rotation of angle θ gives ak = sin (θk) and bk = cos (θk) with θk = kθ+θ/2.

Equation (4.1) then comes from αk =
1√
|S |

sin
(

2k+1
2 θ

)
and βk =

1√
N−|S |

cos
(

2k+1
2 θ

)
.
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With this, we can now take α̃k = αk − βk and β̃k = 2n/2βk which gives us

|φk⟩ = αk
∑

x∈S |x⟩ + βk
∑

x<S |x⟩
= (αk − βk)

∑
x∈S |x⟩ + βk

∑N−1
x=0 |x⟩

= α̃k
∑

x∈S |x⟩ + β̃k |+⟩
⊗n

since |+⟩⊗n =

(
1√
2

)n ∑N−1
x=0 |x⟩.

Proposition 5: In Proposition 4, α̃k increases for k between 0 and π
4

√
N
|S | −

1
2 and β̃k

decreases on the same interval.

Proof. The optimal number of iterations of the loop L in Grover’s algorithm is the smallest

value kopt of k such that ak = 1, i.e., θkopt = π/2. With |S | ≪ N, sin (θ/2) =
√
|S |/N gives

θ ≈ 2
√
|S |/N and θk ≈ (2k + 1)

√
|S |/N. Finally (2kopt + 1)

√
|S |/N optimally approximates π/2

if kopt =

⌊
π
4

√
N
|S | −

1
2

⌉
=

⌊
π
4

√
N
|S |

⌋
.

Moreover, ak = sin (θk) and αk =
1√
|S |

ak are increasing and bk = cos (θk) and βk =
1√

N−|S |
bk

are decreasing for k from 0 to
(
π
4

√
N
|S | −

1
2

)
. From the expressions α̃k = αk − βk and β̃k =

2n/2βk, we get the result of the proposition.



C

CAYLEY HYPERDETERMINANT ∆2222

Let |φ⟩ =
∑

i, j,k,l∈{0,1} ai, j,k,l |i jkl⟩ be a four-qubit state. The algebra of polynomial invariants

for the four-qubit Hilbert space can be generated by the four polynomials H, L, M and D

defined as follows [LT03]:

H = a0000a1111 − a1000a0111 − a0100a1011 + a1100a0011

−a0010a1101 + a1010a0101 + a0110a1001 − a1110a0001

is an invariant of degree 2.

L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a0000 a0010 a0001 a0011

a1000 a1010 a1001 a1011

a0100 a0110 a0101 a0111

a1100 a1110 a1101 a1111

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a0000 a0001 a0100 a0101

a1000 a1001 a1100 a1101

a0010 a0011 a0110 a0111

a1010 a1011 a1110 a1111

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
are two invariants of degree 4.

Consider the partial derivative

bxt := det
(
∂2A
∂yi∂z j

)
of the quadrilinear form A =

∑
i, j,k,l∈{0,1} ai, j,k,lxiy jzktl with respect to the variables y and z.

This quadratic form with variables x and t can be interpreted as a bilinear form on the

three-dimensional space Sym2(C2), i.e., there is a 3 × 3 matrix Bxt satisfying

bxt = [x2
0, x0x1, x2

1] Bxt


t2
0

t0t1
t2
1

 .
Then D = det(Bxt) is an invariant of degree 6.
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Let’s introduce the invariant polynomials

U = H2 − 4(L − M), V = 12(HD − 2LM),

S =
1
12

(U2 − 2V) and T =
1

216
(U3 − 3UV + 216D2).

Then the Cayley hyperdeterminant is [LT03]:

∆2222 = S 3 − 27T 2.



D

COQ PROOFS

This chapter presents two Coq proofs the first one (listing D.1) showing that Mermin

polynomials are well formed operators in the sense of SQIRE, and the second (listing

D.2) that they are Hermitian. These proofs are not here to be understood entirely, but

rather to show what efforts must be made to prove “simple” properties in Coq+SQIRE.

In SQIRE, an operator is a function taking two integers as input, are returning a complex

number. This is a way to represent matrices using functions. an operator also has bounds:

we are only working in finite spaces. In order to be well formed, an operator must return 0

if any of its inputs are less that zero or outside its bounds. In listing D.1, we show the well

formed-ness of the Mermin polynomials using induction on the size of the operators, we

are furthermore doing this proof at the same time for Mn and M′n (for the definition of the

Mermin polynomials, see Sec. 2.4.1). The reader can see in this proof one difficulty of

Coq proofs: each theorem must be explicitly used, for example, the fact that the Kronecker

product of two well formed operators is a well formed operator (called by the command

apply WF_kron) is quite trivial for a human, but not so for Coq.

The proof that Mermin polynomials are Hermitian is quite similar in spirit, the difference

this time is that the calculation for the coefficients of the matrices must be perform, adding

a layer of difficulty. But the proof is still quite compact thanks to the theorems and tactics

implemented by the creators of SQIRE (the tactic unify_pows_two was a real life savior!).
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Lemma WF_Mermin : ∀ a a' : nat → Square 2,
(∀ (n : nat), (WF_Unitary (a n) ∧ WF_Unitary (a' n))) →
(∀ (n : nat), WF_Matrix (Mermin_polynomial_Gen n a a') ∧

WF_Matrix (Mermin_polynomial_Gen ' n a a')).
Proof.
intros a a' H n. case n.
- { (* n = 0 *)

split; unfold Mermin_polynomial_Gen , Mermin_polynomial_Gen '; apply WF_I.
}

- { (* n ≥ 1 *)
intros n0. induction n0.
- { (* n = 1 *)

split; unfold Mermin_polynomial_Gen , Mermin_polynomial_Gen '; apply H.
}

- { (* n > 1 *)
split.
- { (* WF_Matrix (Mermin_polynomial_Gen (n1+2) a a') *)

rewrite Mermin_pol_dev_once.
replace (2 ^ S (S n0))%nat with (2 ^ S n0 * 2)%nat by
unify_pows_two.

apply WF_plus. apply WF_scale. apply WF_kron.
reflexivity. reflexivity.
apply IHn0. apply WF_plus. apply H. apply H. apply WF_scale.
apply WF_kron.
reflexivity. reflexivity.
apply IHn0. apply WF_minus. apply H. apply H.

}
- { (* WF_Matrix (Mermin_polynomial_Gen ' (n1+2) a a') *)

rewrite Mermin_pol '_dev_once.
replace (2 ^ S (S n0))%nat with (2 ^ S n0 * 2)%nat by
unify_pows_two.

apply WF_plus. apply WF_scale. apply WF_kron.
reflexivity. reflexivity.
apply IHn0. apply WF_plus. apply H. apply H. apply WF_scale.
apply WF_kron.
reflexivity. reflexivity.
apply IHn0. apply WF_minus. apply H. apply H.

}
}

}
Qed.

Listing D.1: Proofs of well formed-ness of Mermin polynomials in Coq
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Lemma Mermin_Hermitian : ∀ a a' : nat → Square 2,
(∀ (n : nat), (WF_Unitary (a n) ∧ Hermitian (a n) ∧

WF_Unitary (a' n) ∧ Hermitian (a' n))) →
(∀ (n : nat), Hermitian (Mermin_polynomial_Gen n a a') ∧

Hermitian (Mermin_polynomial_Gen ' n a a')).
Proof.
unfold Hermitian. intros a a' H n. case n.
- { (* n = 0 *)

unfold Mermin_polynomial_Gen , Mermin_polynomial_Gen '.
split; apply id_adjoint_eq.

}
- { (* n ≥ 1 *)

intro n0.
induction n0.
- { (* n = 1 *)

unfold Mermin_polynomial_Gen , Mermin_polynomial_Gen '.
split; apply H.

}
- { (* n > 1 *)

assert ((Mermin_polynomial_Gen (S n0) a a') † =
Mermin_polynomial_Gen (S n0) a a') as SAr.

apply IHn0.
assert ((Mermin_polynomial_Gen ' (S n0) a a') † =

Mermin_polynomial_Gen ' (S n0) a a') as SAr'.
apply IHn0.
split.
- { (* Hermitian (Mermin_polynomial_Gen (n1 + 2) a a') *)

rewrite Mermin_pol_dev_once.
replace (2 ^ S (S n0))%nat with (2 ^ S n0 * 2)%nat by
unify_pows_two.

rewrite Mplus_adjoint. rewrite Mscale_adj. rewrite Mscale_adj.
rewrite kron_adjoint. rewrite kron_adjoint. rewrite Mplus_adjoint.
rewrite Mminus_adjoint.
rewrite SAr'.
rewrite SAr.
destruct (H (S (S n0))) as [_ [SA_a [_ SA_a ']]].
rewrite SA_a, SA_a'.
rewrite SA_half.
reflexivity.

}
- { (* Hermitian (Mermin_polynomial_Gen ' (n1 + 2) a a') *)

rewrite Mermin_pol '_dev_once.
replace (2 ^ S (S n0))%nat with (2 ^ S n0 * 2)%nat by
unify_pows_two.

rewrite Mplus_adjoint. rewrite Mscale_adj. rewrite Mscale_adj.
rewrite kron_adjoint. rewrite kron_adjoint. rewrite Mplus_adjoint.
rewrite Mminus_adjoint.
rewrite SAr'.
rewrite SAr.
destruct (H (S (S n0))) as [_ [SA_a [_ SA_a ']]].
rewrite SA_a, SA_a'.
rewrite SA_half.
reflexivity.

}
}

}
Qed.

Listing D.2: Proofs of Hermitian-ness of Mermin polynomials in Coq
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Abstract:

Although current quantum computers are limited to
the use of a few quantum bits, the foundations
of quantum programing have been growing over
the last 20 years. These foundations have
been theorized as early as in the 80’s but the
complexity of their implementation caused these
leads to be out of reach until very recently. In
this context, the objective of this thesis is to
contribute to the adaptation of the methods of formal
specification and deductive verification of classical
programs to quantum programs. I thus present
my contributions to the study of quantum properties
with the end goal of formalizing them. I study
in particular quantum entanglement and quantum
contextuality. These properties allow to classify
quantum states and protocols, and in particular
to differentiate them from classical ones. My
study of entanglement is based more specifically on

the evolution of entanglement during two quantum
algorithms: the Grover algorithm and the Quantum
Fourier Transform. To quantify entanglement along
those algorithms, I use Mermin’s polynomials, which
have the advantage of being implementable in actual
quantum computers. My study of contextuality,
on the other hand, relies on finite geometries
representing experiments, which are said to be
contextual when no non-contextual classical theory
can predict the results. These geometries are
associated with the binary symplectic polar spaces.
We study their structure, and eventually use this
structure to get insights on quantum protocols using
contextuality. The study of these properties led to
interesting conjectures which we started to formalize
in proof environments, such as Coq and Why3, but
are left as perspective as these works have not reach
a conclusion yet.
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Résumé :

Bien que les ordinateurs quantiques actuels se
limitent à l’utilisation de quelques qubits, les
fondations de la programmation quantique se
sont développées au cours des 20 dernières
années. Ces fondations ont été théorisées dès
les années 80 mais la complexité de leur mise
en œuvre a rendu ces pistes inaccessibles jusqu’à
très récemment. Dans ce contexte, l’objectif
de cette thèse est de contribuer à l’adaptation
des méthodes de spécification formelle et de
vérification déductive des programmes classiques
aux programmes quantiques. Je présente donc mes
contributions à l’étude des propriétés quantiques
dans le but de les formaliser. J’étudie en particulier
l’intrication quantique et la contextualité quantique.
Ces propriétés permettent de classifier les états et
les protocoles quantiques, et en particulier de les
différencier des états et protocoles classiques. Mon
étude de l’intrication est fondée plus spécifiquement
sur l’évolution de l’intrication au cours de deux

algorithmes quantiques : l’algorithme de Grover et
la transformée de Fourier quantique. Pour quantifier
l’intrication le long de ces algorithmes, j’utilise
des polynômes de Mermin, qui ont l’avantage de
pouvoir être implémentables dans des ordinateurs
quantiques réels. Mon étude de la contextualité
s’appuie, elle, sur des géométries finies représentant
des expériences, qui sont dites contextuelles quand
aucune théorie classique non-contextuelle ne peut
en prédire les résultats. Ces géométries sont
associées à des espaces polaires symplectiques
binaires dont nous explorons la structure, avec
comme objectif d’utiliser cette structure pour obtenir
des intuitions sur les protocoles quantiques en
utilisant la contextualité. L’étude de ces propriétés
a conduit à des conjectures intéressantes que
nous avons commencé à formaliser dans des
environnements de preuve tels que Coq et Why3,
mais qui sont laissées en perspective car ces travaux
n’ont pas encore abouti.
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