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Context Quantum circuits, introduced as a model of quantum computation, consist of gates and wires. The
wire represents the qubit, the basic unit of quantum data which forms quantum state space, and the gates
are unitary operators over the quantum state. In the circuit model, measurements are performed after the
reversible operations, hence, they do not appear in the circuit [1]. On the other hand, in QRAM model,
quantum computation is performed under the control of the classical computation [2]. The classical host
constructs quantum circuits by classical computation and applies the circuit by the transfer of it to the
quantum co-processor. The quantum co-processor executes the quantum circuit and return the measurement
values to the host. This interaction between the host and the co-processor is illustrated in Figure 1.
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Figure 1: QRAM model

Although quantum circuits and QRAM are equivalent, practical quan-
tum computation is more likely to be based on the QRAM model. For
this reason, many quantum programming languages and their semantics
are based on QRAM [3, 4, 5, 6, 7, 8]. An interesting implication of this
model is that the quantum circuit construction in classical host can be
dependent on the measurement values from the quantum co-processor.
This transfer of quantum data to host within circuit construction is called
dynamic lift and used in languages like Quipper [4, 9] and QWire [3, 10].

Problem However, the classical control over the circuit construction imposed by dynamic lift has not been
explicitly formalized in the semantics of the quantum circuit languages. In the case of QWire, the operational
semantics finds the normal form of the circuit but the normal form includes the lift followed by any program.
Besides the operational semantics, quantum circuit languages have been formalized in various models as the
denotational semantics based on density matrices [3] and categorical semantics [11, 12, 13, 14, 15]. However,
these examples of formalization do not solve the problem in that they either ignore the structure of circuit
or keep the term with dynamic lift abstract.

Goal Our goal in this paper is to find the model and formalize the semantics of dynamic lift which reveals
the structure of the quantum circuit within the circuit construction. The problem rests in how to analyze
the structure of the circuit without requiring the quantum co-processor to decide the value of measurement.

Contribution We solve the problem by making circuits not only lists but trees branching over the result of
measurements, which makes them quantum channels. The semantics of dynamic lift, hence, can be formalized
by the generation of control flows in the classical computation each of which is interpreted as a quantum
channel. In this paper, we propose a small step operational semantics for a typed language extending quantum
lambda calculus [16] with circuit operators (box and unbox) and circuit constants. The formalization relies
on the semantics of Proto-Quipper [17] but circuits are generalized to quantum channels which allows us to
formalize the semantics of measure operator (dynamic lift). Consequently, the language is extended with a
notion of probabilistically branching term for the circuit construction in each control flow.

Discussion An advantage of having semantics in the quantum channel model is that it gives a new way
to formalize circuit operators. For example, the reversibility of a term can be defined by the existence of a
quantum circuit consisting only of unitary operators which is equivalent to the quantum channel representing
the term. Still our programming language lacks important features of programming language like recursion
and inductive data types and the linear type system imposes that both classical and quantum data is utilised
exactly once. Our future goal is to extend the formalization of the language and use type system with useful
properties to help the implementation of quantum algorithms.
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