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Take away

Quantum computers (are going to / will . . . ) arrive
→ How to write correct programs?

Need specification and verification mechanisms
scale invariant
close to quantum algorithm descriptions
well distinguished from code itself
largely automated

We are developing Qbricks as a first step towards this goal
Core building circuit language
Dual semantics
High level specification framework

Certified implementation of the phase estimation algorithm
(quantum part of Shor)
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Outline

The case for verification of quantum algorithms

Qbricks
Circuit language
Dual semantics
Derive proof obligations
Toward further automation

Case study: phase estimation algorithm

Conclusion
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The QRAM model

A quantum co-processor (QRAM), controlled by a classical
computer

Classical control flow
Quantum computing request, sent to the QRAM

→ Structured sequences of instructions: quantum circuits

let C(f )(x)
= . . .

QRAM

x
C(f )

o(C(f ), x)

Does the circuit fit the computation need?
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The case for verification of quantum algorithms

How do we check them?

Quantum phase estimation (from Nielsen & Chuang)

Quipper QFT circuit building function

implements

builds

runs
?
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The case for verification of quantum algorithms

How do we check them?

Quantum phase estimation (from Nielsen & Chuang)

Quipper QFT circuit building function

implements

builds

runs
?

Quantum programming is tricky and non-intuitive

No means to control an execution

Tests are expensive and often statistical
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The case for verification of quantum algorithms

How do we check them?

Quantum phase estimation (from Nielsen & Chuang)

Quipper QFT circuit building function

implements

builds

runs
?

Testing is difficult . . .
What about full verification? allows to handle

Infinite state space
absolute guarantee
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The case for verification of quantum algorithms

[A parte] Annotated code and deductive
verification

• Provides absolute guarantee

• Automates proofs

• Industrial successes

• Verify wide-spread languages
(C, Java, caml . . . )

Three main ingredients:

operational semantics

specification language

proof engine
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The case for verification of quantum algorithms

State of affairs in quantum computing

Three main ingredients:

• operational semantics: matrices→ matrix product,
from Heisenberg (1925), Dirac (1939)

• specification language: ???

• proof engine: ???
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The case for verification of quantum algorithms

Our goal

Specifications for a quantum specification language

Specifications fitting algorithm

Separate specifications from definitions

- Easier to adopt

- Separation of concerns

Scale invariance

Automate proofs
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The case for verification of quantum algorithms

State of the art
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• Separate specification from code
• Scale invariance
• Specifications fitting algorithm
• Automate proofs

Table: Formal verification of quantum circuits
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The case for verification of quantum algorithms

State of the art, achievements in quantum
formal verification

Size (number of qbits)

Difficulty
10

100

1000

∞

Superposition
coin flip

teleportation

QFT Phase estimation

Shor algorithm

×
Coq

×
QMC

×
Qwire

×
Qwire

×
Path-sums

Our contribution
⊗
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Qbricks

Outline

The case for verification of quantum algorithms

Qbricks
Circuit language
Dual semantics
Derive proof obligations
Toward further automation

Case study: phase estimation algorithm

Conclusion
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Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation
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Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation

A sequence of
operations

Intermediate
assertions, describing
the state of the
system at each step
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Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation

Derive function specifications, eg :

let create superposition (state)
pre: |u〉 is a ket vector
pre: state = |0〉|u〉
post: state = 1√

2t

∑2t−1
j=0 |j〉|u〉

= (* The program *)

Functions decorated with pre and post conditions : annotated
programming

→ embedding in the Why3 environment
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Qbricks – Dual semantics

Circuit building functions

I(0) . . .H

. . .
I(0) . . .H

. . .

. . .
. . .

. . .. . .. . .

U2t−1
U2t−2

U20

Rev(QFT (n))

•

•

•

I(0) . . .H

. . .

. . .
. . .

. . .. . .. . .

U2t−1
U2t−2

U20

Rev(QFT (n))

•

•

•
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Qbricks – Dual semantics

Specification and verification

Leading idea

x: quantum state
C: quantum circuit

~C , x�: quantum state
semantics

Path-sum semantics, general form

C , |k 〉n
1√
2r

∑2r−1

j=0 ph(k , j)|ket(i, j)〉n
path sum sem

Three separated parameters, whith recursive definitions:
r: int
ph : int→ int→ complex
ket : int→ int→ int
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Qbricks – Derive proof obligations

Specified circuit building

Three separated parameters:
r: int
ph : int→ int→ complex
ket : int→ int→ int

functions r (sum range), ph (phase part) and ket (ket part) are
defined by recursion for circuits,
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Qbricks – Derive proof obligations

Specified circuit building

Three separated parameters:
r: int
ph : int→ int→ complex
ket : int→ int→ int

functions r (sum range), ph (phase part) and ket (ket part) are
defined by recursion for circuits,

they specify circuit lifted constructors
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Qbricks – Derive proof obligations

Specified circuit building

Three separated parameters:
r: int
ph : int→ int→ complex
ket : int→ int→ int

functions r (sum range), ph (phase part) and ket (ket part) are
defined by recursion for circuits,
they specify circuit lifted constructors
and the circuit building functions
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Qbricks – Derive proof obligations

Generating proof obligations (why3)

Compilation generates proof obligations

GT IQ — Christophe Chareton — p. 16



Qbricks – Derive proof obligations

Generating proof obligations (why3)

Compilation generates proof obligations

Calling a function provides its postconditions as axioms

. . .
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Qbricks – Derive proof obligations

Supporting proof obligations

Proof obligations may be sent to SMT-solvers,

and they can be eased, if needed, by to interactive
transformations
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Qbricks – Toward further automation

Toward further automation

reasoning abstractly from path-sums (instead of r, ph and ket)
Nice path-sum theorems:

- Linearity
- Translate sequence as function composition
- Translate parallel as Kronecker product

Enables abstract specifications:
- Eigen value specifications
- Controlled operations, etc

Precious when dealing with underspecified circuit parameters

Simplified path-semantics, for adequate language fragments

Property Class of circuits Design input
flat {rz, ph, cnot} syntax easy specification

diag {rz, ph} syntax
very easy specification

iterators
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Case study: phase estimation algorithm
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Case study: phase estimation algorithm

Phase estimation
Input: an unitary operator U and an eigenstate |v〉 of U
Output: the eigenvalue associated to |v〉

Eigen decomposition
Solving linear systems
Shor (with arithmetic assumption and probability)

Size (number of qbits)

Difficulty
10

100

1000

∞

Superposition
coin flip

teleportation

QFT Phase estimation

Shor algorithm

×
Coq

×
QMC

×
Qwire

×
Qwire

×
Path-sums

Our contribution
⊗
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Case study: phase estimation algorithm

Case study

#Lines #Def. #Lem #POs #Aut. #Cmd
create superposition 42 2 1 11 6 36
apply black box 57 3 1 50 44 46
QFT 75 3 0 57 51 30
phase estimation 63 4 0 72 65 51
Total 237 12 2 190 166 163

#Aut.: automatically proven POs — #Cmd: interactive commands

Table: Implementation & verification of phase estimation

#Lines #Def. #Lem #POs #Aut. #Cmd
QFT (full Qbricks) 75 3 0 57 51 30
QFT (path-sum only) 87 3 0 73 64 49
QFT (matrix only) 200 8 15 306 285 106

#Aut.: automatically proven POs — #Cmd: interactive commands

Table: Comparison of several approaches, QFT algorithm
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Conclusion

Conclusion

Qbricks: a core development framework for certified quantum
programming

scale invariant
close to quantum algorithm descriptions
well distinguished from code itself
largely automated

Implementation
Circuit building language
Dual semantics + equivalence proof
Shorcuts for further automation
Certified implementation of the phase estimation algorithm

Future works:
Further automate proof framework
Extend Qbricks to measure→ Shor
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