
Toward certified quantum programming

Christophe Chareton
Sébastien Bardin, François Bobot, Valentin Perrelle (CEA) and Benoı̂t Valiron (LRI)

GT IQ
November 28-29th 2019

Take away

Quantum computers (are going to / will . . .) arrive
→ How to write correct programs?

Need specification and verification mechanisms
scale invariant
close to quantum algorithm descriptions
well distinguished from code itself
largely automated

We are developing Qbricks as a first step towards this goal
Core building circuit language
Dual semantics
High level specification framework

Certified implementation of the phase estimation algorithm
(quantum part of Shor)

GT IQ — Christophe Chareton — p. 2

Outline

The case for verification of quantum algorithms

Qbricks
Circuit language
Dual semantics
Derive proof obligations
Toward further automation

Case study: phase estimation algorithm

Conclusion

GT IQ — Christophe Chareton — p. 3

The QRAM model

A quantum co-processor (QRAM), controlled by a classical
computer

Classical control flow
Quantum computing request, sent to the QRAM

→ Structured sequences of instructions: quantum circuits

let C(f)(x)
= . . .

QRAM

x
C(f)

o(C(f), x)

Does the circuit fit the computation need?

GT IQ — Christophe Chareton — p. 4

The QRAM model

A quantum co-processor (QRAM), controlled by a classical
computer

Classical control flow
Quantum computing request, sent to the QRAM

→ Structured sequences of instructions: quantum circuits

let C(f)(x)
= . . .

?
f(x)

x
C(f)

o(C(f), x)o(C(f), x)

Does the circuit fit the computation need?

GT IQ — Christophe Chareton — p. 4

The case for verification of quantum algorithms

How do we check them?

Quantum phase estimation (from Nielsen & Chuang)

Quipper QFT circuit building function

implements

builds

runs
?

GT IQ — Christophe Chareton — p. 5

The case for verification of quantum algorithms

How do we check them?

Quantum phase estimation (from Nielsen & Chuang)

Quipper QFT circuit building function

implements

builds

runs
?

Quantum programming is tricky and non-intuitive

No means to control an execution

Tests are expensive and often statistical

GT IQ — Christophe Chareton — p. 5

The case for verification of quantum algorithms

How do we check them?

Quantum phase estimation (from Nielsen & Chuang)

Quipper QFT circuit building function

implements

builds

runs
?

Testing is difficult . . .
What about full verification? allows to handle

Infinite state space
absolute guarantee

GT IQ — Christophe Chareton — p. 5

The case for verification of quantum algorithms

[A parte] Annotated code and deductive
verification

• Provides absolute guarantee

• Automates proofs

• Industrial successes

• Verify wide-spread languages
(C, Java, caml . . .)

Three main ingredients:

operational semantics

specification language

proof engine

GT IQ — Christophe Chareton — p. 6

The case for verification of quantum algorithms

State of affairs in quantum computing

Three main ingredients:

• operational semantics: matrices→ matrix product,
from Heisenberg (1925), Dirac (1939)

• specification language: ???

• proof engine: ???

GT IQ — Christophe Chareton — p. 7

The case for verification of quantum algorithms

Our goal

Specifications for a quantum specification language

Specifications fitting algorithm

Separate specifications from definitions

- Easier to adopt

- Separation of concerns

Scale invariance

Automate proofs

GT IQ — Christophe Chareton — p. 8

The case for verification of quantum algorithms

State of the art

Q
M

C

C
oq

Q
w

ire
(C

oq
)

P
at

h-
su

m
s

Q
br

ic
ks

• Separate specification from code
• Scale invariance
• Specifications fitting algorithm
• Automate proofs

Table: Formal verification of quantum circuits

GT IQ — Christophe Chareton — p. 9

The case for verification of quantum algorithms

State of the art, achievements in quantum
formal verification

Size (number of qbits)

Difficulty
10

100

1000

∞

Superposition
coin flip

teleportation

QFT Phase estimation

Shor algorithm

×
Coq

×
QMC

×
Qwire

×
Qwire

×
Path-sums

Our contribution
⊗

GT IQ — Christophe Chareton — p. 10

Qbricks

Outline

The case for verification of quantum algorithms

Qbricks
Circuit language
Dual semantics
Derive proof obligations
Toward further automation

Case study: phase estimation algorithm

Conclusion

GT IQ — Christophe Chareton — p. 11

Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation

GT IQ — Christophe Chareton — p. 12

Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation

A sequence of
operations

Intermediate
assertions, describing
the state of the
system at each step

GT IQ — Christophe Chareton — p. 12

Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation

Derive function specifications, eg :

let create superposition (state)
pre: |u〉 is a ket vector
pre: state = |0〉|u〉
post: state = 1√

2t

∑2t−1
j=0 |j〉|u〉

= (* The program *)

Functions decorated with pre and post conditions : annotated
programming

→ embedding in the Why3 environment

GT IQ — Christophe Chareton — p. 12

Qbricks – Dual semantics

Circuit building functions

I(0) . . .H

. . .
I(0) . . .H

. . .

. . .
. . .

.

U2t−1
U2t−2

U20

Rev(QFT (n))

•

•

•

I(0) . . .H

. . .

. . .
. . .

.

U2t−1
U2t−2

U20

Rev(QFT (n))

•

•

•

GT IQ — Christophe Chareton — p. 13

Qbricks – Dual semantics

Specification and verification

Leading idea

x: quantum state
C: quantum circuit

~C , x�: quantum state
semantics

Path-sum semantics, general form

C , |k 〉n
1√
2r

∑2r−1

j=0 ph(k , j)|ket(i, j)〉n
path sum sem

Three separated parameters, whith recursive definitions:
r: int
ph : int→ int→ complex
ket : int→ int→ int

GT IQ — Christophe Chareton — p. 14

Qbricks – Derive proof obligations

Specified circuit building

Three separated parameters:
r: int
ph : int→ int→ complex
ket : int→ int→ int

functions r (sum range), ph (phase part) and ket (ket part) are
defined by recursion for circuits,

GT IQ — Christophe Chareton — p. 15

Qbricks – Derive proof obligations

Specified circuit building

Three separated parameters:
r: int
ph : int→ int→ complex
ket : int→ int→ int

functions r (sum range), ph (phase part) and ket (ket part) are
defined by recursion for circuits,

they specify circuit lifted constructors

GT IQ — Christophe Chareton — p. 15

Qbricks – Derive proof obligations

Specified circuit building

Three separated parameters:
r: int
ph : int→ int→ complex
ket : int→ int→ int

functions r (sum range), ph (phase part) and ket (ket part) are
defined by recursion for circuits,
they specify circuit lifted constructors
and the circuit building functions

GT IQ — Christophe Chareton — p. 15

Qbricks – Derive proof obligations

Generating proof obligations (why3)

Compilation generates proof obligations

GT IQ — Christophe Chareton — p. 16

Qbricks – Derive proof obligations

Generating proof obligations (why3)

Compilation generates proof obligations

Calling a function provides its postconditions as axioms

. . .

GT IQ — Christophe Chareton — p. 16

Qbricks – Derive proof obligations

Supporting proof obligations

Proof obligations may be sent to SMT-solvers,

and they can be eased, if needed, by to interactive
transformations

GT IQ — Christophe Chareton — p. 17

Qbricks – Toward further automation

Toward further automation

reasoning abstractly from path-sums (instead of r, ph and ket)
Nice path-sum theorems:

- Linearity
- Translate sequence as function composition
- Translate parallel as Kronecker product

Enables abstract specifications:
- Eigen value specifications
- Controlled operations, etc

Precious when dealing with underspecified circuit parameters

Simplified path-semantics, for adequate language fragments

Property Class of circuits Design input
flat {rz, ph, cnot} syntax easy specification

diag {rz, ph} syntax
very easy specification

iterators

GT IQ — Christophe Chareton — p. 18

Case study: phase estimation algorithm

Outline

The case for verification of quantum algorithms

Qbricks
Circuit language
Dual semantics
Derive proof obligations
Toward further automation

Case study: phase estimation algorithm

Conclusion

GT IQ — Christophe Chareton — p. 19

Case study: phase estimation algorithm

Phase estimation
Input: an unitary operator U and an eigenstate |v〉 of U
Output: the eigenvalue associated to |v〉

Eigen decomposition
Solving linear systems
Shor (with arithmetic assumption and probability)

Size (number of qbits)

Difficulty
10

100

1000

∞

Superposition
coin flip

teleportation

QFT Phase estimation

Shor algorithm

×
Coq

×
QMC

×
Qwire

×
Qwire

×
Path-sums

Our contribution
⊗

GT IQ — Christophe Chareton — p. 20

Case study: phase estimation algorithm

Case study

#Lines #Def. #Lem #POs #Aut. #Cmd
create superposition 42 2 1 11 6 36
apply black box 57 3 1 50 44 46
QFT 75 3 0 57 51 30
phase estimation 63 4 0 72 65 51
Total 237 12 2 190 166 163

#Aut.: automatically proven POs — #Cmd: interactive commands

Table: Implementation & verification of phase estimation

#Lines #Def. #Lem #POs #Aut. #Cmd
QFT (full Qbricks) 75 3 0 57 51 30
QFT (path-sum only) 87 3 0 73 64 49
QFT (matrix only) 200 8 15 306 285 106

#Aut.: automatically proven POs — #Cmd: interactive commands

Table: Comparison of several approaches, QFT algorithm

GT IQ — Christophe Chareton — p. 21

Conclusion

Conclusion

Qbricks: a core development framework for certified quantum
programming

scale invariant
close to quantum algorithm descriptions
well distinguished from code itself
largely automated

Implementation
Circuit building language
Dual semantics + equivalence proof
Shorcuts for further automation
Certified implementation of the phase estimation algorithm

Future works:
Further automate proof framework
Extend Qbricks to measure→ Shor

GT IQ — Christophe Chareton — p. 22

Commissariat à l’énergie atomique et aux énergies alternatives
CEA Tech List
Centre de Saclay — 91191 Gif-sur-Yvette Cedex
www- list.cea.fr

Etablissement public à caractère industriel et commercial — RCS Paris B 775 685 019

www-list.cea.fr

	The case for verification of quantum algorithms
	Qbricks
	Circuit language
	Dual semantics
	Derive proof obligations
	Toward further automation

	Case study: phase estimation algorithm
	Conclusion

