
Supervised learning and Entanglement geometry Neural networks and polynomial equations Results

Learning Algebraic Models of
Quantum Entanglement

JAFFALI Hamza and OEDING Luke

PhD. advisors: HOLWECK Frederic and MEROLLA Jean-Marc

FEMTO-ST, University of Bourgone Franche-Comté
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Quantum Entanglement is an important resource in Quantum Information
and Quantum Computations, useful and sometimes essential for Quantum

Algorithms and Quantum Communication Protocols.

Being able to distinguish between separable and entangled states, or being
able to recognize a specific type of entanglement become important to

understand more precisely the role and the nature of entanglement in such
computations.

In this work, we are interested in the classification and characterization of
the entanglement under the action of the group SLOCC (Stochastic Local

Operation with Classical Communication).

GSLOCC = SL2(C)× SL2(C)× · · · × SL2(C)
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Normal form Entanglement class

|00〉+ |11〉 Entangled (EPR)
|00〉 Separable

Table: SLOCC classification of entanglement for 2-qubit states.

Normal form Entanglement class

|000〉+ |111〉 GHZ
|001〉+ |010〉+ |100〉 W

|000〉+ |110〉 Biseparable AB–C
|000〉+ |101〉 Biseparable B–CA
|000〉+ |011〉 Biseparable A–BC

|000〉 Separable

Table: SLOCC classification of entanglement for 3-qubit states.
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Table: 9 Vestraete et al. (corrected) families for 4-qubits entanglement
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However it is one of the rare cases (with the 3-qutrit case) where we can
regroup all SLOCC orbits into families depending on parameters, while the

number of orbits is infinite. Providing a full classification of SLOCC
entanglement classes is a already a hard problem for 5-qubits systems, for

instance.

Need to develop new tools, in order to characterize or distinguish several
entanglement classes for multipartite systems.

Our idea is to use Machine Learning techniques to bring and build
interesting tools. Our goal is not to provide a full classification, but only to

recognize several types of entanglement, and thus being able to
discriminate some non-SLOCC-equivalent states.
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Presentation Outline

1 Supervised learning and Entanglement geometry

2 Neural networks and polynomial equations

3 Results
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Machine Learning

Machine Learning is an emergent field in Computer Science, which aim is
to study and develop algorithms, permitting computer systems to perform a

specific task without using explicit instructions.

These technologies are also studied in the field of Quantum Computations,
and many researchers are actually working in developing Quantum Machine

Learning algorithmsa, exploiting the quantum speed-up to improve such
algorithms.

Our approach is the opposite: we leverage classical Machine Learning to
study and classify Quantum Entanglement.

aAlessandro Luongo et al. (2019). q-means: A quantum algorithm for
unsupervised machine learning. In NeurIPS 2019.
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Different approaches
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Machine Learning – Supervised Learning

Principle

Supervised Learning is the machine learning task of learning a function
that maps a given input to its correct output, by exploiting an initial
knowledge of the problem.

Why supervised ?

The training step require initial informations about the problem, and most
of the time initial correct data to train the Machine Learning achitecture.
We give to the machine what we call a Training Dataset. We can think
of supervised learning as teaching by example, and in that sense, we are
supervising the learning process of the machine.

The goal is to be able to make correct predictions for new data, with a
high accuracy.
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Different approaches – Supervised Learning – Applications

Classification
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Supervised Learning and Quantum states

We focus here on the case of pure qubit states. A general n-qubit system
|ψ〉 ∈ H = C2 ⊗ · · · ⊗ C2 can be represented as a N = 2n dimensional
vector xψ = (a0, a1, . . . , aN−1) ∈ C2n , with |ψ〉 expressed in the
computational basis as:

|ψ〉 = a0|0 . . . 00〉+ a1|0 . . . 01〉+ · · ·+ aN−1|1 . . . 11〉

We will thus use the vector xψ as the feature vector for the training
database. We construct then the training database:

DTrain = {(xψ1 , y1), ..., (xψM
, yM)}

where yi can refer to the entanglement class (’0’ for separable, ’1’ for
entangled) for instance.

In our work, we focused on 3 different problems of classification.
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Separable states and Entangled states

The set of separable states define a unique orbit under the action of
SLOCC (it is the orbit of the state |00 . . . 0〉). Any state which is not
separable is in fact entangled. We want then to build a binary classifier to
distinguish between separable and entangled pure states.

A separable state |ψsep〉 is a state that can be written as the tensor
product of each qubit representing each particle of the system. In algebraic
geometry, it is known that points of the Segre variety are in fact
separable states.

|ψsep〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉

How do we build the training dataset ?

We sample separable states by computing the Kronecker product of n
random qubits.

We generate entangled states by summing several separable states
(with high probability the resulting state is not separable).
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Degenerate and Non-degenerate states

Degenerate states are points on the dual of the Segre variety, i.e. they
define the zero-set of an homogeneous polynomial: the
hyperdeterminant.

The hyperdeterminant is the generalization of the determinant for
multidimensional matrices, and it is considered as a possible measure of
entanglement [4].

∆222(|ψ〉) = a2000a
2
111+a2011a

2
100+a2010a

2
101+a2001a

2
110−2a000a011a100a111−2a000a010a101a111

−2a000a001a110a111+4a000a011a101a110−2a010a011a100a101−2a001a011a100a110−2a001a010a101a110

+4a001a010a100a111

∆222(|ψsep〉) = ∆222(
∣∣ψbisep〉) = ∆222(|W 〉) = 0

∆222(|GHZ 〉) 6= 0
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Degenerate and Non-degenerate states

We want to build a binary classifier to distinguish between degenerate and
non-degenerate states.

How do we build the training dataset ?

We sample degenerate states by
applying a random SLOCC operation
on the state of this form (figure to the
right)

We generate random tensor of
H = C2 ⊗ · · · ⊗ C2 (with high
probability the resulting state is
non-generate).

Example for 3× 3× 3 states
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Rank of a quantum state

Tensor rank can be used as an algebraic measure of entanglementa. It
has been used in to study the entanglement of states generated by Grover’s
algorithm [3] .

We recall that H is the Hilbert space where live n-qubits states, i.e.
H = C2 ⊗ C2 ⊗ · · · ⊗ C2. Then |ψ〉 ∈ H is said to be of :

rank 1 if |ψ〉 = |u1〉 ⊗ |u2〉 ⊗ · · · ⊗ |un〉, with |ui 〉 ∈ C2,

rank r if |ψ〉 = |ψ1〉+ |ψ2〉+ · · ·+ |ψr 〉, where |ψi 〉 are rank 1 tensors,
where r is minimal.

Thus, rank one tensors correspond to separable states and every tensor
which is not of rank one should be considered as entangled.

aBrylinski, J. L. (2002). Algebraic measures of entanglement. Mathematics
of quantum computation, 3-23.
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Border rank and Secant varieties

One can also introduce the notion of border rank which is related with
the notion of rank.

A state |ψ〉 ∈ H has border rank ≤ R if there exists a family of rank R
states {|ψε〉 | ε > 0} such that limε→0 |ψε〉 = |ψ〉.

States with border rank at most R represent points on the Secant Variety
σR . For 3-qubits, we know that |GHZ 〉 has rank and border rank equal to
2, while |W 〉 has rank equal to 3 and border rank equal to 2.

How do we generate data ?

We sum R random states of rank 1 to generate states with border rank R
(with some probability). If |ψ〉 has border rank of R, then |ψ〉 ∈ σR and
|ψ〉 6∈ σR−1.

16 / 34
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Neural Networks

Principle

The Neural Network (or connectionist system) is a computing
system which goal is to reproduce several functions and basis
structure of human brain.

An Artificial Neural Network (ANN) is characterized by 3 main
components :

1 Artificial neuron

2 Architecture of the network

3 Learning algorithm

17 / 34
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Artificial Neuron

The first model was proposed by McCulloch and Pitts in 1943.

1 Inputs coming from other
neurons

2 Weights (synaptic weights)
3 Weighted sum of the inputs

4 Threshold

5 Activation Function

6 Output

18 / 34
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Artificial Neuron – Activation functions

Activation functions permit to introduce non-linearity between the inputs
and the outputs: it allows to consider more difficult problems.

19 / 34
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Multi-Layer Perceptron – MLP

Most of classification problems can not be solved using a single neuron.
We need to introduce more complex structures and architectures in the

network. It is the aim of the Multilayer Perceptron model.

20 / 34



Supervised learning and Entanglement geometry Neural networks and polynomial equations Results

Multi-Layer Perceptron – Learning process

How to predict the correct output ?

We define an error function, which measure the error between the
predicted output and the correct output (from the training dataset),
and this for each input of the dataset

The learning process is then an optimization process to find the
weights of the network that minimize the error function

Designing the network before learning

The architecture of an Artificial Neural Network mainly depends on the
following choices:

Number of layers

Number of neurons in each layer

Activation functions for each layer/neuron

21 / 34
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Algebraic varieties and Polynomial equations

There is no general rules for choosing the right architecture, and it will
depend on the classification problem studied.

In our case, we want to distinguish between points inside and outside a
given algebraic variety. Algebraic varieties are defined as the zero locus

of a set of homogeneous polynomials.

We want to design Artificial Neural Network to model polynomial
equations, and thus detect states that satisfy a set of polynomial equations.

22 / 34
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First example: linear equation in n variables

Let us suppose we want to classify points inside and outside a linear
subspace defined by the following linear equation in n variables
(x1, . . . , xn) ∈ R:

a1x1 + a2x2 + a3x3 + · · ·+ anxn + an+1 = 0

 

c 
𝑥1 

𝑥𝑛  

𝑖𝑑(𝑥) 𝑠 = 𝜆. (𝑎1𝑥1 + ⋯ +𝑎𝑛𝑥𝑛 + 𝑎𝑛+1) 

Inputs Weights 

Neuron 

Output 

𝜃 = 𝜆. 𝑎𝑛+1 c 
1 

𝑤1 = 𝜆. 𝑎1 

𝑤𝑛 = 𝜆. 𝑎𝑛 
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We may need to deal with polynomials of higher degrees. Let us suppose
we want to model the circle equation x2 + y2 − r2 = 0 with an Artificial
Neural Network.

The idea here is to introduce a square activation function to generate
degree 2 terms from the weighted sum.

 

c 
𝑥 

𝑦 

𝑥2
 

Inputs Weights First layer Outputs 

𝜃1 
c 

1 

𝑤1,1 

𝑥2
 

𝑖𝑑(𝑥) 

Second layer 

c 
1 

𝜃2 
𝜃3 

𝑤2,1 

𝑤2,2 

𝑤1,2 

𝑏1 

𝑠3 = 𝑏1(𝑤1,1𝑥 + 𝑤2,1𝑦 + 𝜃1)² 

+ 𝑏2(𝑤1,2𝑥 + 𝑤2,2𝑦 + 𝜃2)²

+ 𝜃3 
𝑏2 
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We want generalize this result to any homogeneous polynomial of
degree d , since secant varieties, the Segre variety and its dual variety are
defined by a set of homogeneous polynomials.

The question is: how much neurons with activation function x 7→ xd

should we combine in the first layer ?

Theorem – Alexander-Hirschowitz

Any homogeneous polynomial p of degree d in n variables can be written
as the sum of T = d 1n

(d+n−1
d

)
e d-th powers of linear forms, s.t.

p(x1, x2, . . . , xn) =
T∑
j=1

(
n∑

i=1

aijxi

)d

,

except in the following cases:
{d = 2} ; {n = 2, d = 4} ; {n = 3, d = 4} ; {n = 4, d = 3} ; {n = 4, d = 4}.
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Classifiers and accuracy

Classifier 1 – Binary classifier – Separable/Entangled

Tensor size Architecture Training acc. Validation acc. Testing acc. Loss

2× 2 (4,4,1) 96.65% 96.60% 96.63% 0.092

2× 2× 2 (21,8,1) 94.57% 94.06% 94.44% 0.15

2×4 (1188,8,1) 91.72% 91.60% 91.33% 0.26

3× 3× 3 (332,12,1) 94.68% 92.89% 92.94% 0.15

Tensor size Architecture Training acc. Validation acc. Testing acc. Loss

2× 2 (100,50,25,16,1) 98.92% 98.78% 98.83% 0.043

2× 2× 2 (100,50,25,16,1) 97.80% 97.42% 97.55% 0.074

2×4 (100,50,25,16,1) 99.62% 99.50% 99.53% 0.016

2×5 (100,50,25,16,1) 98.83% 98.55% 98.55% 0.037

3× 3× 3 (100,50,25,16,1) 98.55% 98.01% 97.92% 0.051
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Classifiers and accuracy

Classifier 2 – Binary classifier – Degenerate/Non-degenerate

Tensor size Architecture Training acc. Validation acc. Testing acc. Loss

2× 2× 2 (60,10,1) 92.49% 92.18% 92.09% 0.1837

Tensor size Architecture Training acc. Validation acc. Testing acc. Loss

2× 2× 2 (100,50,25,16,1) 93.44% 92.53% 92.74% 0.1629

2×4 (200,100,50,16,1) 99.50% 95.95% 95.94% 0.01791

2×5 (100,50,25,16,1) 99.95% 98.74% 98.83% 0.001533

3× 3× 3 (100,50,25,16,1) 98.18% 96.78% 96.83% 0.04770
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Classifiers and accuracy

Classifier 3 – Multiclass classifier – Rand and Border rank

Tensor size Architecture Training acc. Validation acc. Testing acc. Loss

2× 2× 2 (169,25,3) 88.19% 88.03% 87.95% 0.3028

Tensor size Architecture Training acc. Validation acc. Testing acc. Loss

2× 2× 2 (200,100,50,25,3) 94.19% 94.07% 93.79% 0.1674

2×4 (200,100,50,25,3) 85.49% 84.45% 84.47% 0.3144

2×5 (200,100,50,25,3) 81.39% 79.88% 79.77% 0.4230
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Back to 3-qubit classification

|GHZ 〉

|W 〉
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Back to 3-qubit classification

∣∣ψbisep〉
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5-qubits entanglement – Dual variety

|Φ〉 = 1√
6

(√
2|11111〉+ |11000〉+ |00100〉+ |00010〉+ |00001〉

)
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Mean value μ= 0.338, Variance σ= 0.472

This implies that ∆22222(|Φ〉) = 0
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5-qubits entanglement – Dual variety

|δ〉 = 1√
11

(
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Mean value μ= 0.665, Variance σ= 0.471

This implies that ∆22222(|δ〉) 6= 0 33 / 34
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Thank you for your attention - Questions ...
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