
Formalization of a Programming Language for
Quantum Circuits with Measurement and Classical

Control

Dong-Ho Lee1,3 Sébastien Bardin1 Valentin Perrelle1

Benôıt Valiron2,3

1CEA LIST, Université Paris-Saclay, France
2CentraleSupélec, Université Paris-Saclay, France

3LRI, Université Paris-Saclay, France

29/Nov/2019

1 / 19

Outline
1 Context

QRAM model
Motivation

2 Problem
Quantum circuit languages
Dynamic lifting

3 State of the art
Semantics for quantum programming languages

4 Our Work
Overview
Formalization of quantum channel
Language and type systems
Operational semantics and type safety
Example

5 Conclusion
6 Bibliography

2 / 19

Context QRAM model

QRAM Model

QRAM is a model of quantum computation which consists of two parts:

classical computer does classical computation with the ability to
construct and send quantum process.

quantum co-processor simulates quantum process and informs the
classical computer with the observed values.

Quantum
co-processor

Classical host

Gates + measurements

Feedbacks: result from measurement

Figure 1: QRAM model

Quantum computation can be statistical set of quantum computation

3 / 19

Context Motivation

Necessity of a programming language

Some difficulties in quantum programming:

non-intuitive design and reason

difficulty of testing induced by probabilistic nature

side effect regarding quantum state when debugging

Programming language helps:

represent large circuits efficiently

construct circuits in a structured way

Expressive programs including:

circuit level operators

representation of families of circuits

utilisation of the host/quantum co-processor interaction

high-order data types and recursion

4 / 19

Context Motivation

Necessity of formal methods

We want to analyze quantum programs without execution:

correctness and safety of the program

analysis of resources like memory and time

How to apply formal methods:

formalization of operational semantics

type systems for guaranteeing the safety of program

Several remarks on formalization:

probabilistic side-effects from the host/quantum co-processor
interaction

duplicable versus non-duplicable data

formalization of families of circuits

circuit-level operations (control, reverse, etc) are not applicable to all
quantum circuits

5 / 19

Problem Quantum circuit languages

Quipper and QWire

Examples of programming languages based on QRAM model:

Quipper [1] is an expressive, high-order programming language,
embedded into Haskell
It has been used to various existing quantum algorithms
However, it lacks its own type checker, depending on Haskell

QWire [2] is a general circuit language embedded into Coq
It is expressive and analyzes program in Coq’s logic
Proofs can be automatized using tactics
But still not scalable easily

Programming language allows one to construct circuits using classical
computation and run them by simulation
Classical data by measurement of quantum state is transferred to the
classical host

6 / 19

Problem Dynamic lifting

Semantics of measurement and classical control

Dynamic lifting: information transferred from the quantum co-processor to
the classical host used in circuit construction
Quipper and QWire implement dynamic lifting without an explicit
formalization of its semantics

In QWire, the operational semantics performs normalization for
composition and unbox operations but the classical control by
dynamic lifting is hidden in the host term within the unbox.

In Quipper, the operational semantics is encoded in Haskell’s monadic
type system and capture a notion of dynamic circuit including
measurements. However, this semantics has never been fully
formalized.

Quantum circuit construction in the classical host can be dependent on
the result of a measurement

7 / 19

State of the art Semantics for quantum programming languages

Semantics of circuit description

ProtoQuipper [3]
- Subset of Quipper regarding circuit construction and transfer is
formalized semantics with an abstract machine
- Description of host/quantum co-processor interaction

box : (A (B) (Circ(A,B)
unbox : Circ(A,B) ((A (B)

- Linear/non-linear type system by subtyping
- Missing: measurement, lists, etc.

Monoidal Symmetric Categories
- Models of graphical languages consist of boxes (morphisms) and
strings (objects) [4]
- Provide the categorical semantics of a quantum circuit language [5]
- CPO-enrichment gives interpretations of recursion [6]
- The evaluation of quantum circuits is not formalized, hence the
feedback of quantum co-processor in circuit construction

8 / 19

State of the art Semantics for quantum programming languages

Semantics of quantum computation

C ∗-algebra
- Interprets quantum computation as completely positive unital
(CPU) maps between C ∗-algebras
- A state is a map from a C ∗-algebra to C
Equational Theory of Quantum Computation [7]
- Considers quantum computation as algebraic structure with linear
parameters (e.g. measurement : (1 | 0, 0))
- Provides a set of axioms for an equation theory of quantum
computation
- Proves the full completeness of the theory with respect to the model
of algebraic theories which is based on C ∗-algebra

Quantum Domain Theory [8]
- Provides the semantics of the evaluation of quantum circuits
- Uses probabilistic distribution monad

9 / 19

Our Work Overview

Outline of research

Objective: formalize a semantics for interleaved quantum circuits and
dynamic lifting

Difficulty: analysis of the structure of computation without simulation of
measurement

Solution: make circuits not only lists but trees branching over the result of
measurements (quantum channels)
Dynamic lift: generation of multiple control flows in classical computation
each of which is interpreted as a quantum channel

Contribution:

a typed language extending quantum lambda calculus [9] with box
and unbox operators and quantum channel constants

a small step operational semantics formalizing dynamic lift and
quantum channel construction
The formalization extends the one of Proto-Quipper [3]

10 / 19

Our Work Formalization of quantum channel

Algebraic structure of quantum channel

QCAlg: abstract structure of quantum channels which represent quantum
circuits with tree-shaped control flow with measurement

ε(W) | U(W) Q | init b w Q | meas w Q1 Q2 | free w Q

where w , b, and W respectively refer to wires, booleans, and finite sets of
wires.
Accessible quantum channel: a pair of a quantum channel object and a
tree of binding function (Q, b) satisfying

the structure of Q corresponds to the structure of b meaning each
terminal of Q and b can be matched

each binding function of the terminals of b links variables to the wire
names being used in the corresponding branch of Q

Quantum channel constant: a tuple (p, (Q, b),m) where supp(p) = in(Q)
and free variables of each term of m are linked by the corresponding
binding function of b to the wires of the corresponding branch of Q.
Type QChan(−,−) is for first class objects of quantum channel

11 / 19

Our Work Language and type systems

Branching term and linear type system

Quantum computation containing dynamic lift may reduce to different
values depending on the results of measurements
Branching term: represents probabilistic distributions of computations
Language:

Term(M) ::= x | ∗ | tt | ff | (p, (Q, b),m) | λx .M | MaMb | 〈Ma,Mb〉 |
let 〈x , y〉 = Ma in Mb | if M then Ma else Mb | box(M) | unbox

Branching term(m) ::= M | [ma,mb]

Linear type system ensures variables are used exactly once in each branch
of control flow
Type rules ensure that all terms of a branching term share the same type
Type rules for circuit construction operators:

∅ ` M : P (A

∅ ` box(M) : QChan(P,A) ∅ ` unbox : (QChan(P,A)⊗ P) (A

12 / 19

Our Work Operational semantics and type safety

Circuit-buffering operational semantics

Circuit-buffering abstract machine operates on quantum channel while
reducing the term
Configuration is represented by a pair ((Q, b),m) consisting of an
accessible quantum channel (Q, b) and a branching term m
We use a graphical representation of configuration where the green box
represents the accessible quantum channel and each square-boxed term is
linked to a leaf.

〈tt, x〉

〈ff, y〉
w

w
x

w
y

Figure 2: Graphical representation of a configuration with measurement

The labels above the edge show the bundle of wires while the labels for
the variables are below the edge.
Reduction can take place in each branch of branching term.

13 / 19

Our Work Operational semantics and type safety

QRAM-based operational semantics

QRAM-based operational semantics simulates quantum circuit by applying
the corresponding operation on quantum register
Configuration is (φ, L, (Q, b),m) where (φ, L) is the state of a quantum
memory with linking function and ((Q, b),m) is a circuit-buffering
configuration

The reduction
p

=⇒ is probabilistic relation over QRAM-based configurations
with probability p
Accessible quantum channel is generated according to the circuit-buffering
operational semantics

14 / 19

Our Work Example

Semantics of measurement

A constant meas of type qubit (bool⊗ qubit is defined as:

meas ::= unbox

q, q

q

q

,

x 7→ q

y 7→ q

,
〈tt, x〉

〈ff, y〉

Behavior of measurement:

Classical computation: creates states for each outcome
Quantum channel: add a measurement gate to the circuit

Formally by circuit-buffering operational semantics:

rewire
(
{wc}, {q 7→ wc}, q

x

)
= wc

x

rewire

{wc}, {q 7→ wc}, q

q
x

q
y

 = wc

wc
x

wc
y

meas(x)
wc
x −→

〈ff, x〉

〈ff, y〉

wc

wc
x

w
c

y

Figure 3: Application of the reduction rule for meas
15 / 19

Our Work Example

Example of non-trivial circuit construction

The program in Eq. (1) measures the qubit vc and construct circuits
depending on the measurement.

exp ::= let 〈b, vc〉 = meas(vc) in T

T ::= if b then 〈init(tt), free(vc)〉 else 〈vc , ∗〉
(1)

Despite simple structure, the program does not correspond to a circuit
because of the classical control.

let 〈b, vc〉 = meas(vc) in T
wc
vc

−→

let 〈b, vc〉 = 〈tt, vc〉 in T

let 〈b, vc〉 = 〈ff, vc〉 in T

wc

wc
vc

w
cvc

−→∗

〈init(tt), free(vc)〉

〈vc , ∗〉

wc

wc
vc

w
cvc

−→∗
init true wd free wc 〈vd , ∗〉

〈vc , ∗〉
wc

w c
wc ,wd wd

vd

wc
vc

Figure 4: Reduction of a term creating a branching term and a quantum channel
with measurement

16 / 19

Conclusion

Conclusion

Summary: we have:

defined a simple language extending both the quantum lambda
calculus and ProtoQuipper equipped with a strictly linear type system

formalized a semantics of dynamic lifting and non-trivial classical
control flows generated by measurements in quantum circuit
construction

shown a subject reduction and a progress lemma for both
circuit-buffering and QRAM-based operational semantics

Future goal:

extend the formalization of the language to important features such
as recursion, inductive data types

linearity and non-linearity type system

17 / 19

Conclusion

Thank You!

18 / 19

Bibliography

References

[1] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, “Quipper: A scalable quantum
programming language”, in ACM SIGPLAN Notices, ACM, vol. 48, 2013, pp. 333–342.

[2] J. Paykin, R. Rand, and S. Zdancewic, “Qwire: A core language for quantum circuits”, in ACM
SIGPLAN Notices, ACM, vol. 52, 2017, pp. 846–858.

[3] N. J. Ross, “Algebraic and logical methods in quantum computation”, PhD thesis, Dalhousie
University, 2015.

[4] P. Selinger, “A survey of graphical languages for monoidal categories”, in New structures for physics,
Springer, 2010, pp. 289–355.

[5] F. Rios and P. Selinger, “A categorical model for a quantum circuit description language”, arXiv
preprint arXiv:1706.02630, 2017.

[6] B. Lindenhovius, M. Mislove, and V. Zamdzhiev, “Enriching a linear/non-linear lambda calculus: A
programming language for string diagrams”, in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ACM, 2018, pp. 659–668.

[7] S. Staton, “Algebraic effects, linearity, and quantum programming languages”, SIGPLAN Not.,
vol. 50, no. 1, pp. 395–406, Jan. 2015, issn: 0362-1340. doi: 10.1145/2775051.2676999. [Online].
Available: http://doi.acm.org/10.1145/2775051.2676999.

[8] M. Rennela, “Enrichment in categorical quantum foundations”, PhD thesis, Nov. 2018. doi:
10.13140/RG.2.2.10344.52485.

[9] P. Selinger and B. Valiron, “A lambda calculus for quantum computation with classical control”,
Mathematical Structures in Computer Science, vol. 16, no. 3, pp. 527–552, 2006.

19 / 19

https://doi.org/10.1145/2775051.2676999
http://doi.acm.org/10.1145/2775051.2676999
https://doi.org/10.13140/RG.2.2.10344.52485

	Context
	QRAM model
	Motivation

	Problem
	Quantum circuit languages
	Dynamic lifting

	State of the art
	Semantics for quantum programming languages

	Our Work
	Overview
	Formalization of quantum channel
	Language and type systems
	Operational semantics and type safety
	Example

	Conclusion
	Bibliography

